Skip to main content
Log in

Photoreduction synthesis of various azoxybenzenes by visible-light irradiation under continuous flow conditions

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

A variety of substituted azoxybenzenes can be obtained by simple photoreduction of the corresponding nitrobenzene using a flow microreactor. The yield and chemoselectivity of each azoxybenzene depends on the type and position of the substituents. In addition, the use of liquid-liquid slug flow conditions, consisting of an organic solution and a fluorous solvent like tetradecafluorohexane (TDFH) or octadecafluorooctane (ODFO), improves both the conversion and yield of this photoreduction compared to those in simple one-phase flow conditions; these results are due to synergy between the very smooth photoreduction process and the highly efficient mixing obtained under continuous-flow conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Blaser HU, Steiner H, Studer M (2009). ChemCatChem 1:210–221

    Article  CAS  Google Scholar 

  2. Egli R (1991) The design and synthesis of organic dyes and pigments. Elsevier, Amsterdam

    Google Scholar 

  3. Huang R, Wang Y, Liu X, Zhou P, Jin S, Zhang Z (2021). React Chem Eng 6:112–118

    Article  CAS  Google Scholar 

  4. Yan Z, Xie X, Song Q, Ma F, Sui X, Huo Z, Ma M (2020). Green Chem 22:1301–1307

    Article  CAS  Google Scholar 

  5. Nozawa-Kumada K, Abe E, Ito S, Shigeno M, Kondo Y (2018). Org Biomol Chem 16:3095–3098

    Article  CAS  PubMed  Google Scholar 

  6. Jawale DV, Gravel E, Boudet C, Shah N, Geertsen V, Li H, Namboothiri INN, Doris E (2015). Chem Commun 51:1739–1742

    Article  CAS  Google Scholar 

  7. Boymans EH, Witte PT, Vogt D (2015). Catal Sci Technol 5:176

    Article  CAS  Google Scholar 

  8. Liu X, Li HQ, Ye S, Liu YM, He HY, Cao Y (2014). Angew Chem Int Ed 53:7624–7628

    Article  CAS  Google Scholar 

  9. Morales-Guio CG, Yuranov I, Kiwi-Minsker L (2014). Top Catal 57:1526–1532

    Article  CAS  Google Scholar 

  10. Wang J, Hu L, Cao X, Lu J, Li X, Gu H (2013). RSC Adv 3:4899–4902

    Article  CAS  Google Scholar 

  11. Sakai N, Fujii K, Nabeshima S, Ikeda R, Konakahara T (2010). Chem Commun 46:3173–3175

    Article  CAS  Google Scholar 

  12. Wu JH, Zhang F (2020). Sci Total Environ 710:136322

    Article  CAS  PubMed  Google Scholar 

  13. Shi Y, Wang H, Wang Z, Wu T, Song Y, Guo B, Wu L (2020). J Mater Chem A 8:18755–18766

    Article  CAS  Google Scholar 

  14. Tan H, Liu XC, Su JH, Wang YX, Gu XM, Yang DJ, Waclawik ER, Zhu HY, Zheng ZF (2019). Sci Rep 9:1280

    Article  PubMed  PubMed Central  Google Scholar 

  15. Todorov AR, Aikonen S, Muuronen M, Helaja J (2019). Org Lett 21:3764–3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shokouhimehr M, Hong K, Lee TH, Moon CW, Hong SP, Zhang K, Suh JM, Choi KS, Varma RS, Jang HW (2018). Green Chem 20:3809–3817

    Article  CAS  Google Scholar 

  17. Dai Y, Li C, Shen Y, Zhu S, Hvid MS, Wu LC, Skibsted JLY, Niemantsverdriet JWH, Besenbacher F, Lock N, Su R (2018). J Am Chem Soc 140:16711–16719

    Article  CAS  PubMed  Google Scholar 

  18. Huang HH, Chen YF, Niu GH, Chuang GJ (2017). Synlett 28:1191–1194

    Article  CAS  Google Scholar 

  19. Tsutsumi K, Uchikawa F, Sakai K, Tabata K (2016). ACS Catal 6:4394–4398

    Article  CAS  Google Scholar 

  20. Zhou B, Song J, Wu T, Liu H, Xie C, Yang G, Han B (2016). Green Chem 18:3852–3857

    Article  CAS  Google Scholar 

  21. Liu Z, Huang Y, Xiao W, Zhu H (2016). Green Chem 18:817–825

    Article  CAS  Google Scholar 

  22. Gao W, Xu Y, Chen Y, Fu WF (2015). Chem Commun 51:13217–13220

    Article  CAS  Google Scholar 

  23. Pahari SK, Pal P, Srivastava DN, Ghosh SC, Panda AB (2015). Chem Commun 51:10322–10325

    Article  CAS  Google Scholar 

  24. Mohamed RM, Ibrahim FM (2015). J Ind Eng Chem 22:28–33

    Article  CAS  Google Scholar 

  25. Yu XY, Chen JR, Xiao WJ (2021). Chem Rev 121:506–561

    Article  CAS  PubMed  Google Scholar 

  26. Srivastava V, Singh PK, Srivastava A, Singh PP (2020). RSC Adv 10:20046–20056

    Article  CAS  Google Scholar 

  27. Zhou WJ, Wu XD, Miao M, Wang ZH, Chen L, Shan SY, Cao GM, Yu DG (2020). Chem Eur J 26:15052–15064

    Article  CAS  PubMed  Google Scholar 

  28. Barata-Vallejo S, Postigo A (2020). Chem Eur J 26:11065–11084

    Article  CAS  PubMed  Google Scholar 

  29. Zhou QQ, Zou YQ, Lu LQ, Xiao WJ (2019). Angew Chem Int Ed 58:1586–1604

    Article  CAS  Google Scholar 

  30. Chuentragool P, Kurandina D, Gevorgyan V (2019). Angew Chem Int Ed 58:11586–11598

    Article  CAS  Google Scholar 

  31. Huang C, Li XB, Tung CH, Wu LZ (2018). Chem Eur J 24:11530–11534

    Article  CAS  PubMed  Google Scholar 

  32. Marzo L, Pagire SK, Reiser O, König B (2018). Angew Chem Int Ed 57:10034–10072

    Article  CAS  Google Scholar 

  33. Lang X, Chen X, Zhao J (2014). Chem Soc Rev 43:473–486

    Article  CAS  PubMed  Google Scholar 

  34. Zou YQ, Chen JR, Xiao WJ (2013). Angew Chem Int Ed 52:11701–11703

    Article  CAS  Google Scholar 

  35. Prier CK, Rankic DA, MacMillan DWC (2013). Chem Rev 113:5322–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen GJ, Xin WL, Wang JS, Cheng JY, Dong YB (2019). Chem Commun 55:3586–3589

    Article  CAS  Google Scholar 

  37. Ke X, Zhang X, Zhao J, Sarina S, Barry J, Zhu H (2013). Green Chem 15:236–244

    Article  CAS  Google Scholar 

  38. Zhu H, Ke X, Yang X, Sarina S, Liu H (2010). Angew Chem Int Ed 49:9657–9661

    Article  CAS  Google Scholar 

  39. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L (2007) Chem Commun 3425-3437

  40. Dai Y, Li C, Shen Y, Lim T, Xu J, Li Y, Niemantsverdriet H, Besenbacher F, Lock N, Su R (2018). Nat Commun 9:60

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang XJ, Chen B, Zheng LQ, Wu LZ, Tung CH (2014). Green Chem 16:1082–1086

    Article  CAS  Google Scholar 

  42. Sambiagio C, Noël T (2020). Trends Chem 2:92–106

    Article  CAS  Google Scholar 

  43. Rehm TH (2020). ChemPhotoChem 4:235–254

    Article  CAS  Google Scholar 

  44. Di Filippo M, Bracken C, Baumann M (2020). Molecules 25:356

    Article  PubMed Central  Google Scholar 

  45. Rehm TH (2020). Chem Eur J 26:16952–16974

    Article  CAS  PubMed  Google Scholar 

  46. Kayahan E, Jacobs M, Braeken L, Thomassen LCJ, Kuhn S, van Gerven T, Leblebici ME (2020). Beilstein J Org Chem 16:2484–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Williams JD, Kappe CO (2019). Chim Oggi 37:36–39

    CAS  Google Scholar 

  48. Pradhan SR, Colmenares-Quintero RF, Quintero JCC (2019). Molecules 24:3315

    Article  CAS  Google Scholar 

  49. Otake Y, Nakamura H, Fuse S (2018). Tetrahedron Lett 59:1691–1697

    Article  CAS  Google Scholar 

  50. Politano F, Oksdath-Mansilla G (2018). Org Process Res Dev 22:1045–1062

    Article  CAS  Google Scholar 

  51. Mizuno K, Nishiyama Y, Ogaki T, Terao K, Ikeda H, Kakiuchi K (2016). J Photochem Photobiol C 29:107–147

    Article  CAS  Google Scholar 

  52. Cambie D, Bottecchia C, Straathof NJW, Hessel V, Noël T (2016). Chem Rev 116:10276–10341

    Article  CAS  PubMed  Google Scholar 

  53. Pu X, Zhang B, Su Y (2019). Chem Eng Technol 42:2146–2153

    Article  CAS  Google Scholar 

  54. Nishiyama Y, Fujii A, Mori H (2019). React Chem Eng 4:2055–2059

    Article  CAS  Google Scholar 

  55. Jang S, Jung BJ, Kim MJ, Lee W, Kim DP (2019). React Chem Eng 4:1752–1756

    Article  CAS  Google Scholar 

  56. Kuhn A, von Eschwege KG, Conradie J (2012). J Phys Org Chem 25:58–68

    Article  CAS  Google Scholar 

  57. Nakano M, Morimoto T, Noguchi J, Tanimoto H, Mori H, Tokumoto S, Koishi H, Nishiyama Y, Kakiuchi K (2019). Bull Chem Soc Jpn 92:1467–1473

    Article  CAS  Google Scholar 

  58. Nakano M, Nishiyama Y, Tanimoto H, Morimoto T, Kakiuchi K (2016) Org. Process Res Dev 20:1626–1632

    Article  CAS  Google Scholar 

  59. Miller Jr WT, Koch Jr SD (1957). J Am Chem Soc 79:3084–3089

    Article  CAS  Google Scholar 

  60. Musgrave WKR, Smith F (1949) J Chem Soc 3021-3026

Download references

Acknowledgements

The authors are grateful for special support “the Research for Advanced Core Technologies (ReACT)” for this research by the Wakayama prefecture. We would like to thank Editage (www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Nishiyama.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no known conflicts of interest/competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Scientific Highlights

The hydrophilicity of solvent influences the product distribution of photorecution of nitrobenzenes.

Various kinds of azoxybenzene can be obtained as a main product using only a flow microreactor.

The slug flow consisting of fluorous solvents can improve both the conversion and yield of the bimolecular photoreaction.

Supporting Information

1H- and 13C-NMR chart of each azoxybenzene obtained in this paper.

ESM 1

(DOC 8467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, Y., Fujii, A. & Mori, H. Photoreduction synthesis of various azoxybenzenes by visible-light irradiation under continuous flow conditions. J Flow Chem 12, 71–77 (2022). https://doi.org/10.1007/s41981-021-00190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-021-00190-1

Keywords

Navigation