Skip to main content
Log in

A revised 1D equivalent model for the determination of incident photon flux density in a continuous-flow LED-driven spiral-shaped microreactor using the actinometry method with Reinecke’s salt

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Continuous-flow microstructured technologies are now recognized as promising alternatives to batch processing for organic photochemistry, especially when light emitting diodes (LEDs) are employed as light sources. To evaluate and optimize productivity and energetic efficiency, the knowledge of the incident photon flux density is crucial. In this context, the objectives of the present work are dual: first, to transfer the classical actinometry method with Reinecke’s salt to a continuous-flow LED-driven spiral-shaped reactor and second, to propose a revised one-dimensional equivalent model for the accurate determination of the incident photon flux density in this microreactor. Experimental measurements were carried out under controlled conditions. The effects of the spectral domain and radiant power emitted, the tubing length, the presence of gas-liquid Taylor flow, and the material of the support plate were especially investigated. An expression was established for the revised one-dimensional Cartesian model, taking into account the diffuse emission of the LED array and the reflection induced by the material of the plate in which the tubing was inserted (i.e. the reflection by the backside of the microreactor wall). In this way, the incident photon flux density could be estimated with an acceptable level of accuracy, which was not the case if the usual 1D model was applied (collimated emission and no reflection).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hoffmann N (2008). Chem Rev 108:1052–1103

    Article  CAS  Google Scholar 

  2. Ciana CL, Bochet CG (2007). Chimia 61:650–654

    Article  CAS  Google Scholar 

  3. Bach T, Hehn JP (2011). Angew Chem Int Ed 50:1000–1045

    Article  CAS  Google Scholar 

  4. Zimmerman HE (1969). Angew Chem Int Ed 8(1):1–88

    Article  CAS  Google Scholar 

  5. Turro NJ (1986) Geometric and topological thinking in organic chemistry. Angew Chem Int Ed 25(10):882–901

    Article  Google Scholar 

  6. Hoffmann N (2012). Photochem Photobiol Sci 11(11):1613–1641

    Article  CAS  Google Scholar 

  7. Coyle EE, Oelgemöller M (2008). Photochem Photobiol Sci 7:1313–1322

    Article  CAS  Google Scholar 

  8. Oelgemöller M (2012). Chem Eng Technol 35(7):1144–1152

    Article  Google Scholar 

  9. Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T (2016). Chem Rev 116(7):10276–11034

    Article  Google Scholar 

  10. Loubière K, Oelgemöller M, Aillet T, Dechy-Cabaret O, Prat L (2016). Chem Eng Process 104:120–132

    Article  Google Scholar 

  11. Haas CP, Roider T, Hoffmann RW, Tallarek U (2019). React Chem Eng 4:1912–1916

    Article  CAS  Google Scholar 

  12. Braun AM, Peschl G, Oliveros E (2004) In: handbook of organic photochemistry and photobiology3rd edn. CRC Press

  13. Aillet T, Loubiere K, Dechy-Cabaret O, Prat L (2012). Chem Eng Process 64:38–47

    Article  Google Scholar 

  14. Cornet JF, Marty A, Gros JB (1997). Biotechnol Prog 13:408–415

    Article  CAS  Google Scholar 

  15. Braun AM., Maurette MT, Oliveros E (1986). Photochemical technology, J. Wiley & Sons. New York

  16. Kuhn H, Braslavsky SE, Schmidt R (2004). Pure Appl Chem 76:1–47

    Article  Google Scholar 

  17. Wriedt B, Ziegenbalg D (2020). J Flow Chem 10:295–306

    Article  Google Scholar 

  18. Aillet T, Loubiere K, Dechy-Cabaret O, Prat L (2014). Int J Chem React Eng 12:1–13

    Article  CAS  Google Scholar 

  19. Hatchard CG, Parker CA (1956). Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 235:518–536

    CAS  Google Scholar 

  20. Wriedt B, Kowalczyk D, Ziegenbalg D (2018). ChemPhotoChem 2(10):913–921

    Article  CAS  Google Scholar 

  21. El Achi N, Bakkour Y, Chausset-Boissarie L, Penhoat M, Rolando C (2017). RSC Adv 7:29815–29820

    Article  Google Scholar 

  22. Brauer HD, Schmidt R, Gauglitz G, Hubig S (1983). Photochem Photobiol 37(6):595–598

    Article  CAS  Google Scholar 

  23. Santos AR, Ballardini R, Belser P, Gandolfi MT, Iyer VM, Moggi L (2009). Photochem Photobiol Sci 8(12):1734–1742

    Article  CAS  Google Scholar 

  24. Rochatte V, Dahi G, Eskandari A, Dauchet J, Gros F, Roudet M, Cornet JF (2017). Chem Eng J 308:940–953

    Article  CAS  Google Scholar 

  25. Heller HG, Langan JR (1981). J Am Chem Soc:341–343

  26. Pitre SP, McTiernan CD, Vine W, Dipucchio R, Grenier M, Scaiano JC (2015). Sci Rep 5:1–10

    Article  Google Scholar 

  27. Roibu A, Fransen S, Lebleci E, Meir G, Van Gerven T, Kuhn S (2018). Sci Rep 8(1):5421

    Article  Google Scholar 

  28. Wegner EE, Adamson AW (1966). J Am Chem Soc 88(3):394–404

    Article  CAS  Google Scholar 

  29. Radjagobalou R, Blanco JF, da Silva Freitas VD, Supplis C, Gros F, Dechy-Cabaret O, Loubière K (2019). J Photochem Photobiol A 382:111934

    Article  CAS  Google Scholar 

  30. Radjagobalou R, Blanco JF, Petrizza L, Le Bechec M, Dechy-Carbaret O, Lacombe S, Save M, Loubière K (2021). ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.0c06627

  31. Mei M, Felis F, Dietrich N, Hébrard G, Loubière K (2020). Theor Found Chem Eng 54(1):25–47

    Article  Google Scholar 

  32. Mei M, Dietrich N, Hébrard G, Loubière K (2020). Chem Eng Sci 222:115717

    Article  CAS  Google Scholar 

  33. Yao C, Zhao Y, Maa H, Liu Y, Zhao Q, Chen G (2021). Chem Eng Sci 229:116017

    Article  CAS  Google Scholar 

  34. Radjagobalou R, Blanco JF, Dechy-Cabaret O, Oelgemöller M, Loubière K (2018). Chem Eng Process 130:214–228

    Article  CAS  Google Scholar 

  35. Terao K, Nishiyama Y, Kakiuchi K (2014). J Flow Chem 4(1):35–39

    Article  CAS  Google Scholar 

  36. Nakano M, Nishyama Y, Tanimoto H, Morimoto T, Kakiuchi K (2016). Org Process Res Des 20(9):1626–1632

    Article  CAS  Google Scholar 

  37. Nakano M, Morimoto T, Noguchi J, Tanimoto H, Mori H, Tokumoto SI, Koishi H, Nishiyama Y, Kakiuchi K (2019). Bull Chem Soc Jpn 92(9):1467–1473

    Article  CAS  Google Scholar 

  38. Telmesani R, White JAH, Beeler AB (2018). ChemPhotoChem 2:865

    Article  CAS  Google Scholar 

  39. M. N. Polyanskiy, “Refractive index database.” https://refractiveindex.info/

Download references

Acknowledgments

This work was sponsored by the French Research Agency (ANR) under the Collaborative Research Project Programme PICPOSS (ANR-15-CE07-0008-01).

J. Dauchet, J.-F. Cornet and F. Gros wish to thank the French National Agency as this work was sponsored by a public grant overseen by this Agency as part of the “Investissements d’Avenir” programme through the IMobS3 Laboratory of Excellence (ANR-10-LABX-0016) and the IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karine Loubiere.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Knowledge of the incident photon flux is essential for any design of a continuous-flow microstructured photoreactor.

• The actinometry method with Reinecke’s salt was successfully transferred to a continuous-flow LED-driven microreactor.

• By establishing a revised 1D Cartesian model, the incident photon flux densities could be determined with good accuracy.

Supplementary Information

ESM 1

(DOCX 11.3 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radjagobalou, R., Freitas, V.D.D.S., Blanco, JF. et al. A revised 1D equivalent model for the determination of incident photon flux density in a continuous-flow LED-driven spiral-shaped microreactor using the actinometry method with Reinecke’s salt. J Flow Chem 11, 357–367 (2021). https://doi.org/10.1007/s41981-021-00179-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-021-00179-w

Keywords

Navigation