Skip to main content
Log in

Synthesis of arenediazonium salts and Suzuki- Miyaura cross-coupling reaction in microreactors

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

The process characteristics of two main steps in the preparation of 4-nitrobiphenyl (4-NBP) from 4-nitroaniline (PNA) were clearly revealed by applying two continuous-flow microreactors. The first step was the synthesis of 4-nitrobenzene diazonium tetrafluoroborate (4-NBDT) through the diazotization reaction. The reaction temperature, the residence time, and the molar ratio of different reactants were investigated to achieve optimal reaction conditions with the highest yield of 4-NBDT. Notably, the yield of 4-NBDT reached 97% at 25 °C only in 2.3 s with the optimal molar ratio of HBF4, NaNO2 and PNA (i.e., 2.72:1.05:1). The second step was the Suzuki-Miyaura cross-coupling reaction, in which HNO3 was used to transform the reaction system into a homogeneous state. The effects of mixing performance, the molar percentage of Pd(OAc)2 to 4-NBDT, the reaction temperature and the residence time on the Suzuki-Miyaura cross-coupling reaction were investigated systematically. With the molar percentage of Pd(OAc)2 to 4-NBDT of 1 mol%, the yield of 4-nitrobiphenyl (4-NBP) was optimized to 99% in just 13 min at 25 °C. This study demonstrated the excellent potential of utilizing the continuous-flow microreactor for the diazotization and the following Suzuki-Miyaura cross-coupling reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M (2002) Aryl−aryl bond formation one century after the discovery of the ullmann reaction. Chem Rev 102(5):1359–1470

    Article  CAS  PubMed  Google Scholar 

  2. Kotha S, Lahiri K, Kashinath D (2002) Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 58(48):9633–9695

    Article  CAS  Google Scholar 

  3. Felpin FX, Fouquet E, Zakri C (2009) Improved Suzuki-Miyaura reactions of aryldiazonium salts with boronic acids by tuning palladium on charcoal catalyst properties. Adv Synth Catal 351(4):649–655

    Article  CAS  Google Scholar 

  4. Suzuki A (1999) Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J Organomet Chem 576(1–2):147–168

    Article  CAS  Google Scholar 

  5. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95(7):2457–2483

    Article  CAS  Google Scholar 

  6. Munirathinam R, Huskens J, Verboom W (2015) Supported catalysis in continuous-flow microreactors. Adv Synth Catal 357(6):1093–1123

    Article  CAS  Google Scholar 

  7. Noël T, Buchwald SL (2011) Cross-coupling in flow. Chem Soc Rev 40(10):5010–5029

    Article  PubMed  Google Scholar 

  8. Cantillo D, Kappe CO (2014) Immobilized transition metals as catalysts for cross-couplings in continuous flow-a critical assessment of the reaction mechanism and metal leaching. Chem Cat Chem 6(12):3286–3305

    CAS  Google Scholar 

  9. Gaikwad AV, Holuigue A, Thathagar MB, ten Elshof JE, Rothenberg G (2007) Ion- and atom-leaching mechanisms from palladium nanoparticles in cross-coupling reactions. Chem-Eur J 13(24):6908–6913

  10. Len C, Bruniaux S, Delbecq F, Parmar V (2017) Palladium-catalyzed suzuki–miyaura cross-coupling in continuous flow. Catalysts 7(5)

  11. Bonin H, Fouquet E, Felpin FX (2011) Aryl diazonium versus iodonium salts: preparation, applications and mechanisms for the Suzuki-Miyaura cross-coupling reaction. Adv Synth Catal 353(17):3063–3084

    Article  CAS  Google Scholar 

  12. Yu Z, Tong G, Xie X, Zhou P, Lv Y, Su W (2015) Continuous-flow process for the synthesis of 2-ethylphenylhydrazine hydrochloride. Org Process Res Dev 19(7):892–896

    Article  CAS  Google Scholar 

  13. Li G, Liu S, Dou X, Wei H, Shang M, Luo ZH, Su Y (2020) Synthesis of adipic acid through oxidation of K/a oil and its kinetic study in a microreactor system. AIChE J 66(9)

  14. Srinivas S, Dhingra A, Im H, Gulari E (2004) A scalable silicon microreactor for preferential CO oxidation: performance comparison with a tubular packed-bed microreactor. Appl Catal A 274(1–2):285–293

  15. Chen P, Shen C, Qiu M, Wu J, Bai Y, Su Y (2020) Synthesis of 5-fluoro-2-nitrobenzotrifluoride in a continuous-flow millireactor with a safe and efficient protocol. J Flow Chem 10(1):207–218

    Article  CAS  Google Scholar 

  16. Burns JR, Ramshaw C (2010) A microreactor for the nitration of benzene and toluene. Chem Eng Commun 189(12):1611–1628

    Article  Google Scholar 

  17. Yu Z, Lv Y, Yu C (2012) A continuous kilogram-scale process for the manufacture of o-difluorobenzene. Org Process Res Dev 16(10):1669–1672

    Article  CAS  Google Scholar 

  18. Nalivela KS, Tilley M, McGuire MA, Organ MG (2014) Multicomponent, flow diazotization/Mizoroki-heck coupling protocol: dispelling myths about working with diazonium salts. Chem Eur J 20(22):6603–6607

  19. Noël T, Kuhn S, Musacchio AJ, Jensen KF, Buchwald SL (2011) Suzuki-Miyaura cross-coupling reactions in flow: multistep synthesis enabled by a microfluidic extraction. Angew Chem Int Ed 50(26):5943–5946

    Article  Google Scholar 

  20. Noël T, Musacchio AJ (2011) Suzuki-miyaura cross-coupling of heteroaryl halides and arylboronic acids in continuous flow. Org Lett 13(19):5180–5183

    Article  PubMed  Google Scholar 

  21. Bai L, Fu Y, Cheng Y (2017) Ionic liquid-based suzuki coupling reaction: from batch to continuous microflow system. J Flow Chem 7(2):52–56

    Article  CAS  Google Scholar 

  22. Yan L, Wang H, Bai L, Fu Y, Cheng Y (2019) Suzuki-Miyaura cross-coupling reaction in droplet-based microreactor. Chem Eng Sci 207:352–357

    Article  CAS  Google Scholar 

  23. Reizman BJ, Wang YM, Buchwald SL, Jensen KF (2016) Suzuki-Miyaura cross-coupling optimization enabled by automated feedback. React Chem Eng 1(6):658–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Willis DM, Strongin RM (2000) Palladium-catalyzed cross-coupling of aryldiazonium tetrafluoroborate salts with arylboronic esters. Tetrahedron Lett 41(33):6271–6274

    Article  CAS  Google Scholar 

  25. Bhojane JM, Sarode SA, Nagarkar JM (2016) Nickel–glycerol: an efficient, recyclable catalysis system for Suzuki cross coupling reactions using aryl diazonium salts. New J Chem 40(2):1564–1570

    Article  CAS  Google Scholar 

  26. Gemoets HPL, Kalvet I, Nyuchev AV, Erdmann N, Hessel V, Schoenebeck F, Noël T (2017) Mild and selective base-free C-H arylation of heteroarenes: experiment and computation. Chem Sci 8(2):1046–1055

    Article  CAS  PubMed  Google Scholar 

  27. Roglans A, Pla-Quintana M-MM (2006) Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem Rev 106(11):4622–4643

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt B, Holter F (2011) Suzuki-Miyaura cross coupling reactions with phenoldiazonium salts. Org Biomol Chem 9(13):4914–4920

    Article  CAS  PubMed  Google Scholar 

  29. Sanhueza IA, Klauck FJR, Senol E, Keaveney ST, Sperger T, Schoenebeck F (2021) Base-free cross-couplings of aryl diazonium salts in methanol: pd(ii) -alkoxy as reactivity-controlling intermediate. Angew Chem Int Ed 60(13):7007–7012

    Article  CAS  Google Scholar 

  30. Sheng M, Frurip D, Gorman D (2015) Reactive chemical hazards of diazonium salts. J Loss Prevent Proc 38:114–118

    Article  CAS  Google Scholar 

  31. Yu Z-q, Y-w L, Yu C-m, W-k S (2013) Continuous flow reactor for Balz–Schiemann reaction: a new procedure for the preparation of aromatic fluorides. Tetrahedron Lett 54(10):1261–1263

    Article  CAS  Google Scholar 

  32. Teci M, Tilley M, McGuire MA, Organ MG (2016) Using anilines as masked cross-coupling partners: design of a telescoped three-step flow diazotization, iododediazotization, cross-coupling process. Chem Eur J 22(48):17407–17415

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed B, Barrow D, Wirth T (2006) Enhancement of reaction rates by segmented fluid flow in capillary scale reactors. Adv Synth Catal 348(9):1043–1048

    Article  CAS  Google Scholar 

  34. Ahmed-Omer B, Barrow DA, Wirth T (2009) Heck reactions using segmented flow conditions. Tetrahedron Lett 50(26):3352–3355

    Article  CAS  Google Scholar 

  35. D’Attoma J, Camara T, Brun PL, Robin Y, Bostyn S, Buron F, Routier S (2016) Efficient transposition of the sandmeyer reaction from batch to continuous process. Org Process Res Dev 21(1):44–51

    Article  Google Scholar 

  36. Chernyak N, Buchwald SL (2012) Continuous-flow synthesis of monoarylated acetaldehydes using aryldiazonium salts. J Am Chem Soc 134(30):12466–12469

    Article  CAS  PubMed  Google Scholar 

  37. Kuijpers KPL, Weggemans WMA, Verwijlen CJA, Noël T (2020) Flow chemistry experiments in the undergraduate teaching laboratory: synthesis of diazo dyes and disulfides. J Flow Chem 11(1):7–12

    Article  Google Scholar 

  38. Firth JD, Fairlamb IJS (2020) A need for caution in the preparation and application of synthetically versatile aryl diazonium tetrafluoroborate salts. Org Lett 22(18):7057–7059

    Article  CAS  PubMed  Google Scholar 

  39. Kockmann N, Thenée P, Fleischer-Trebes C, Laudadio G, Noël T (2017) Safety assessment in development and operation of modular continuous-flow processes. React Chem Eng 2(3):258–280

    Article  CAS  Google Scholar 

  40. Darses S, Jeffery T, Genet J-P, Brayer J-L, Demoute J-P (1996) Cross-coupling of arenediazonium tetrafluoroborates with arylboronic acids catalysed by palladium. Tetrahedron Lett 37(22):3857–3860

    Article  CAS  Google Scholar 

  41. Taylor RH, Felpin F-X (2007) Suzuki−Miyaura reactions of arenediazonium salts catalyzed by pd(0)/c. one-pot chemoselective double cross-coupling reactions. Org Lett 9(15):2911–2914

    Article  CAS  PubMed  Google Scholar 

  42. Kuethe JT, Childers KG (2008) Suzuki-Miyaura cross-coupling of 2-nitroarenediazonium tetrafluoroborates: synthesis of unsymmetrical 2-nitrobiphenyls and highly functionalized carbazoles. Adv Synth Catal 350(10):1577–1586

    Article  CAS  Google Scholar 

  43. Bathfield M, D'Agosto F, Spitz R, Ladavière C, Charreyre M-T, Delair T (2007) Additional retardation in raft polymerization: detection of terminated intermediate radicals. Macromol Rapid Comm 28(7):856–862

    Article  CAS  Google Scholar 

  44. Song Y, Shang M, Li G, Luo ZH, Su Y (2017) Influence of mixing performance on polymerization of acrylamide in capillary microreactors. AIChE J 64(5):1828–1840

  45. Okano M, Yoshiro O (1953) Kinetics of the diazotization of anilines. J Am Chem Soc 75(5):5175–5177

    Article  CAS  Google Scholar 

  46. Shukla CA, Kulkarni AA, Ranade VV (2016) Selectivity engineering of the diazotization reaction in a continuous flow reactor. React Chem Eng 1(4):387–396

    Article  CAS  Google Scholar 

  47. Bonin H, Delbrayelle D, Demonchaux P, Gras E (2010) Base free aryl coupling of diazonium compounds and boronic esters: self-activation allowing an overall highly practical process. Chem Commun (Camb) 46(15):2677–2679

    Article  CAS  Google Scholar 

  48. Li X, Yan XY, Chang HH, Wang LC, Zhang Y, Chen WW, Li YW, Wei WL (2012) Suzuki-Miyaura cross-couplings of arenediazonium tetrafluoroborate salts with arylboronic acids catalyzed by aluminium hydroxide-supported palladium nanoparticles. Org Biomol Chem 10(3):495–497

    Article  CAS  PubMed  Google Scholar 

  49. Moreno-Mañas M, Pérez M, Pleixats R (1996) Palladium-catalyzed Suzuki-type self-coupling of Arylboronic acids. A mechanistic study. J Org Chem 61(7):2346–2351

    Article  Google Scholar 

  50. Robinson MK, Kochurina VS, Hanna JM (2007) Palladium-catalyzed homocoupling of arenediazonium salts: an operationally simple synthesis of symmetrical biaryls. Tetrahedron Lett 48(43):7687–7690

    Article  CAS  Google Scholar 

  51. Mohammadi E, Movassagh B (2016) Polystyrene-resin supported N-heterocyclic carbene-Pd(II) complex based on plant-derived theophylline: a reusable and effective catalyst for the Suzuki-Miyaura cross-coupling reaction of arenediazonium tetrafluoroborate salts with arylboronic acids. J Organomet Chem 822:62–66

    Article  CAS  Google Scholar 

  52. Luo M, Qin Y, Wei W (2007) Suzuki-Miyaura cross-coupling of arenediazonium salts with arylboronic acids catalyzed by a recyclable polymer-supported N-heterocyclic carbene-palladium catalyst. Synlett 2007(15):2410–2414

    Article  Google Scholar 

  53. Dai M, Liang B, Wang C, Chen J, Yang Z (2004) Synthesis of a novel C2-symmetric thiourea and its application in the Pd-catalyzed cross-coupling reactions with arenediazonium salts under aerobic conditions. Org Lett 6(2):221–224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to acknowledge financial support from the National Natural Science Foundation of China (No: 92034303), and the Shanghai Jiao Tong University Scientific and Technological Innovation Funds (No: 2019QYB06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangxiao Li or Yuanhai Su.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Li, G., Liu, S. et al. Synthesis of arenediazonium salts and Suzuki- Miyaura cross-coupling reaction in microreactors. J Flow Chem 11, 843–853 (2021). https://doi.org/10.1007/s41981-021-00160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-021-00160-7

Keywords

Navigation