Skip to main content
Log in

Continuous synthesis of monodisperse silica microspheres over 1 μm size

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

This study presents a robust and scalable method for synthesizing continuously the silica microspheres via the Stöber method. Owing to the superb mixing accessible with gas-liquid segmented flow in coiled microtube, satisfactory morphology and mono-dispersity of silica spheres was obtained. The continuous method was firstly optimized through investigating the effects of various operation parameters on the morphology, particle size, size distribution and chemical structure of silica spheres. Without the surfactant, the size of silica spheres was limited < 850 nm due to the partial blockage of microchannel when synthesizing larger silica spheres. The addition of surfactant migrated the clogging issue, enabling the reliable synthesis of microspheres with diameters over 1 μm within a four times shorter residence time (30 min). Moreover, the mono-dispersity of silica microspheres could be further improved by increasing the gas/liquid ratio in segmented flow due to the more intensified mixing in liquid segments, as verified in visual flow field investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hyde EDER, Seyfaee A, Neville F, Moreno-Atanasio R (2016) Colloidal silica particle synthesis and future industrial manufacturing pathways: a review. Ind Eng Chem Res 55(33):8891–8913. https://doi.org/10.1021/acs.iecr.6b01839

    Article  CAS  Google Scholar 

  2. Kim JM, Chang SM, Kong SM, Jinsoo K, Kim I-H, Kim K-S, Kim W-S (2008) Method for mono-dispersed large spherical particles of silica for LCD spacer. Mol Cryst Liq Cryst 492:245–256. https://doi.org/10.1080/15421400802330796

    Article  CAS  Google Scholar 

  3. Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci 26(1):62. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  4. Bogush GH, Tracy MA, Zukoski CF (1988) Preparation of monodisperse silica particles - control of size and mass fraction. J Non Cryst Solids 104(1):95–106. https://doi.org/10.1016/0022-3093(88)90187-1

    Article  CAS  Google Scholar 

  5. Büchel G, Unger KK, Matsumoto A, Tsutsumi K (1998) A novel pathway for synthesis of Submicrometer-size solid core/mesoporous shell silica spheres. Adv Mater 10(13):1036–1038. https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<1036::AID-ADMA1036>3.0.CO;2-Z

    Article  Google Scholar 

  6. Wang X-D, Shen Z-X, Sang T, Cheng X-B, Li M-F, Chen L-Y, Wang Z-S (2010) Preparation of spherical silica particles by Stober process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci 341(1):23–29. https://doi.org/10.1016/j.jcis.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  7. Yokoi T, Sakamoto Y, Terasaki O, Kubota Y, Okubo T, Tatsumi T (2006) Periodic arrangement of silica nanospheres assisted by amino acids. J Am Chem Soc 128(42):13664–13665. https://doi.org/10.1021/ja065071y

    Article  CAS  PubMed  Google Scholar 

  8. Bari AH, Jundale RB, Kulkarni AA (2020) Understanding the role of solvent properties on reaction kinetics for synthesis of silica nanoparticles. Chem Eng J 398:10. https://doi.org/10.1016/j.cej.2020.125427

    Article  CAS  Google Scholar 

  9. Hristov DR, Mahon E, Dawson KA (2015) Controlling aqueous silica nanoparticle synthesis in the 10–100 nm range. Chem Commun 51(98):17420–17423. https://doi.org/10.1039/c5cc06598d

    Article  CAS  Google Scholar 

  10. Luo G, Du L, Wang Y, Wang K (2019) Recent developments in microfluidic device-based preparation, functionalization, and manipulation of nano- and micro-materials. Particuology 45:1–19. https://doi.org/10.1016/j.partic.2018.10.001

    Article  CAS  Google Scholar 

  11. Sui J, Yan J, Liu D, Wang K, Luo G (2020) Continuous synthesis of nanocrystals via flow chemistry technology. Small 16(15):1902828. https://doi.org/10.1002/smll.201902828

    Article  CAS  Google Scholar 

  12. Ogihara T, Ikeda M, Kato M, Mizutani N (1989) Continuous processing of monodispersed titania powders. J Am Ceram Soc 72(9):1598–1601. https://doi.org/10.1111/j.1151-2916.1989.tb06288.x

    Article  CAS  Google Scholar 

  13. Uson L, Arruebo M, Sebastian V, Santamaria J (2018) Single phase microreactor for the continuous, high-temperature synthesis of < 4 nm superparamagnetic iron oxide nanoparticles. Chem Eng J 340:66–72. https://doi.org/10.1016/j.cej.2017.12.024

    Article  CAS  Google Scholar 

  14. Kubo M, Yonemoto T (1999) Continuous synthesis of TiO2 fine particles and increase of particle size using a two-stage slug flow tubular reactor. Chem Eng Res Des 77(A4):335–341. https://doi.org/10.1205/026387699526278

    Article  CAS  Google Scholar 

  15. Cabeza VS, Kuhn S, Kulkarni AA, Jensen KF (2012) Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. Langmuir 28(17):7007–7013. https://doi.org/10.1021/la205131e

    Article  CAS  PubMed  Google Scholar 

  16. Khan SA, Gunther A, Schmidt MA, Jensen KF (2004) Microfluidic synthesis of colloidal silica. Langmuir 20(20):8604–8611. https://doi.org/10.1021/la0499012

    Article  CAS  PubMed  Google Scholar 

  17. He P, Greenway G, Haswell SJ (2011) Microfluidic synthesis of silica nanoparticles using polyethylenimine polymers. Chem Eng J 167(2–3):694–699. https://doi.org/10.1016/j.cej.2010.08.079

    Article  CAS  Google Scholar 

  18. Gutierrez L, Gomez L, Irusta S, Arruebo M, Santamaria J (2011) Comparative study of the synthesis of silica nanoparticles in micromixer-microreactor and batch reactor systems. Chem Eng J 171(2):674–683. https://doi.org/10.1016/j.cej.2011.05.019

    Article  CAS  Google Scholar 

  19. Su M (2017) Synthesis of highly monodisperse silica nanoparticles in the microreactor system. Korean J Chem Eng 34(2):484–494. https://doi.org/10.1007/s11814-016-0297-x

    Article  CAS  Google Scholar 

  20. Ren GY, Su HJ, Wang SD. The combined method to synthesis silica nanoparticle by Stober process. J Sol-Gel Sci Technol:13. https://doi.org/10.1007/s10971-020-05322-y

  21. Hartman RL, Naber JR, Zaborenko N, Buchwald SL, Jensen KF (2010) Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C-N bond formation in microreactors. Org Process Res Dev 14(6):1347–1357. https://doi.org/10.1021/op100154d

    Article  CAS  Google Scholar 

  22. Hartman RL (2012) Managing solids in microreactors for the upstream continuous processing of fine chemicals. Org Process Res Dev 16(5):870–887. https://doi.org/10.1021/op200348t

    Article  CAS  Google Scholar 

  23. Barajas AM, Panton RL (1993) The effects of contact-angle on 2-phase flow in capillary tubes. Int J Multiphase Flow 19(2):337–346. https://doi.org/10.1016/0301-9322(93)90007-h

    Article  CAS  Google Scholar 

  24. Lee CY, Lee SY (2008) Pressure drop of two-phase plug flow in round mini-channels: Influence of surface wettability. Exp Therm Fluid Sci 32(8):1716–1722. https://doi.org/10.1016/j.expthermflusci.2008.06.007

    Article  CAS  Google Scholar 

  25. Lewis JM, Wang Y (2019) Two-phase frictional pressure drop in a thin mixed-wettability microchannel. Int J Heat Mass Transf 128:649–667. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.010

    Article  Google Scholar 

  26. Lee CY, Lee SY (2010) Pressure drop of two-phase dry-plug flow in round mini-channels: Effect of moving contact line. Exp Therm Fluid Sci 34(1):1–9. https://doi.org/10.1016/j.expthermflusci.2009.08.005

    Article  Google Scholar 

  27. Sen N, Koli V, Singh KK, Panicker L, Sirsam R, Mukhopadhyay S, Shenoy KT (2018) Segmented microfluidics for synthesis of BaSO4 nanoparticles. Chem Eng Process 125:197–206. https://doi.org/10.1016/j.cep.2018.01.012

    Article  CAS  Google Scholar 

  28. Dong Z, Fernandez Rivas D, Kuhn S (2019) Acoustophoretic focusing effects on particle synthesis and clogging in microreactors. Lab Chip 19(2):316–327. https://doi.org/10.1039/c8lc00675j

    Article  CAS  PubMed  Google Scholar 

  29. Dong ZY, Udepurkar AP, Kuhn S (2020) Synergistic effects of the alternating application of low and high frequency ultrasound for particle synthesis in microreactors. Ultrason Sonochem 60:9. https://doi.org/10.1016/j.ultsonch.2019.104800

    Article  CAS  Google Scholar 

  30. Knossalla J, Mezzavilla S, Schuth F (2016) Continuous synthesis of nanostructured silica based materials in a gas-liquid segmented flow tubular reactor. New J Chem 40(5):4361–4366. https://doi.org/10.1039/c5nj03033a

    Article  CAS  Google Scholar 

  31. Han YD (2018) Investigations on growth mechanism and controlled syntheses of silica particles in Stöber method. Jilin University, Changchun

  32. El Rassy H, Pierre AC (2005) NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics. J Non-Cryst Solids 351(19–20):1603–1610. https://doi.org/10.1016/j.jnoncrysol.2005.03.048

    Article  CAS  Google Scholar 

  33. Dubey RS, Rajesh YBRD, More MA (2015) Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications. Mater Today Proc 2(4–5):3575–3579. https://doi.org/10.1016/j.matpr.2015.07.098

    Article  CAS  Google Scholar 

  34. Guo Q, Yang G, Huang D, Cao W, Ge L, Li L (2018) Synthesis and characterization of spherical silica nanoparticles by modified Stober process assisted by slow-hydrolysis catalyst. Colloid Polym Sci 296(2):379–384. https://doi.org/10.1007/s00396-017-4260-0

    Article  CAS  Google Scholar 

  35. Moon S, Lee KJ (2017) Simultaneous control of size and surface functionality of silica particle via growing method. Adv Powder Technol 28(11):2914–2920. https://doi.org/10.1016/j.apt.2017.08.019

    Article  CAS  Google Scholar 

  36. Ramachandran V, Fogler HS (1999) Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores. J Fluid Mech 385:129–156. https://doi.org/10.1017/s0022112098004121

    Article  CAS  Google Scholar 

  37. Huang Y, Pemberton JE (2010) Synthesis of uniform, spherical sub-100 nm silica particles using a conceptual modification of the classic LaMer model. Colloid Surf A-Physicochem Eng Asp 360(1–3):175–183. https://doi.org/10.1016/j.colsurfa.2010.02.031

    Article  CAS  Google Scholar 

  38. Tan CG, Bowen BD, Epstein N (1987) Production of monodisperse colloidal silica spheres: Effect of temperature. J Colloid Interface Sci 118(1):290–293. https://doi.org/10.1016/0021-9797(87)90458-9

    Article  CAS  Google Scholar 

  39. Meier M, Ungerer J, Klinge M, Nirschl H (2018) Synthesis of nanometric silica particles via a modified Stöber synthesis route. Colloids Surf A 538:559–564. https://doi.org/10.1016/j.colsurfa.2017.11.047

    Article  CAS  Google Scholar 

  40. Schmutzler T, Schindler T, Schmiele M, Appavou MS, Lages S, Kriele A, Gilles R, Unruh T (2018) The influence of n-hexanol on the morphology and composition of CTAB micelles. Colloid Surf A-Physicochem Eng Asp 543:56–63. https://doi.org/10.1016/j.colsurfa.2017.12.039

    Article  CAS  Google Scholar 

  41. Gunther A, Khan SA, Thalmann M, Trachsel F, Jensen KF (2004) Transport and reaction in microscale segmented gas-liquid flow. Lab Chip 4(4):278–286. https://doi.org/10.1039/b403982c

    Article  CAS  PubMed  Google Scholar 

  42. Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42(7):768–772. https://doi.org/10.1002/anie.200390203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences and the Key Technical Personnel of Chinese Academy of Sciences, the Ministry of Science and Technology of China (grant 2016YFA0602603). The work was also supported by Frontier Scientific Research Project funded by Shell under contract No. PT19253.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhang, Zhiyong Tang or Qing Wu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Synthesis of monodisperse silica microspheres over 1 μm by gas-liquid segmented flow in microreactor.

• Adding the surfactant solved the clogging problem, and preserved the quality of synthesized silica microspheres.

• Adjusting the gas/liquid flow ratio affected the particle size distribution.

Supplementary Information

ESM 1

(DOCX 5.24 MB)

ESM 2

Flow performance when gas/liquid ratio = 1:1. (MP4 1.31 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, S., Zhang, Y., Zhang, J. et al. Continuous synthesis of monodisperse silica microspheres over 1 μm size. J Flow Chem 11, 831–842 (2021). https://doi.org/10.1007/s41981-021-00157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-021-00157-2

Keywords

Navigation