Skip to main content

Advertisement

Log in

Investigating the effect of nonionic surfactant on the silica nanoparticles formation and morphology in a microfluidic reactor

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The conventional sol-gel method used to synthesize monodispersed spherical silica nanoparticles produces particles with irregular shapes and low monodispersity. Microreactors show a promising new platform to synthesize nanomaterials due to their unique flow and mixing characteristics. In most known shear-based droplet generation microreactors, the effect of the flowing liquid’s physical properties on the reactor performance and product characteristics are not well investigated. Scaling-down the flow system was proven to change the flow behavior which will be dominated by the liquid apparent physical properties that are highly controllable. A new method to synthesize silica nanoparticles adapting the sol-gel approach in a microfluidic chip is proposed and experimentally tested in the present work. This work also analyzes changing the flowing reactants’ physical properties using nonionic surfactants with different concentrations on the reaction performance and nanoparticle size and properties. A custom-made microreactor, made from polydimethylsiloxane, was designed and then fabricated using a direct writing technique. The investigated surfactant concentration was within the range of 1 to 5 vol/vol%, respective to tetraethyl orthosilicate. A traditional bench-scale sole-gel method was also performed with the same reaction properties for comparison purposes. The obtained nanoparticles were characterized using transmission electron microscopy and EDX. The silica nanoparticles synthesized from a bench-scale system showed poor monodispersity and an irregular shape compared to the perfect spherical particles produced from the microflow system. The addition of surfactant reduced the coalescence of the droplet besides reducing the size of the droplets. Increasing the surfactant concentration reduces the silica nanoparticle size. The results showed that highly monodispersed silica nanoparticles with an average size of 5.76 ± 1.27 nm were synthesized using the microflow system comparing to silica nanoparticles with a mean size of 95 ± 4 nm produced from the bench-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. New York

  2. Oertel T, Helbig U, Hutter F, Kletti H, Sextl G (2014) Influence of amorphous silica on the hydration in ultra-high performance concrete. Cem Concr Res 58:121–130

    Article  CAS  Google Scholar 

  3. Geszke-Moritz M, Moritz M (2016) APTES-modified mesoporous silicas as the carriers for poorly water-soluble drug. Modeling of diflunisal adsorption and release. Appl Surf Sci 368:348–359

    Article  CAS  Google Scholar 

  4. Rajanna SK, Kumar D, Vinjamur M, Mukhopadhyay M (2015) Silica aerogel microparticles from rice husk ash for drug delivery. Ind Eng Chem Res 54(3):949–956

    Article  CAS  Google Scholar 

  5. Liberman A, Mendez N, Trogler WC, Kummel AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69(2–3):132–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J, Shah ZH, Zhang S, Lu R (2014) Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications. Nanoscale 6(9):4418–4437

    Article  CAS  PubMed  Google Scholar 

  7. Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22(11):1182–1195

    Article  PubMed  Google Scholar 

  8. Yue R, Meng D, Ni Y, Jia Y, Liu G, Yang J et al (2013) One-step flame synthesis of hydrophobic silica nanoparticles. Powder Technol 235:909–913

    Article  CAS  Google Scholar 

  9. Zhao M, Zheng L, Bai X, Li N, Yu L (2009) Fabrication of silica nanoparticles and hollow spheres using ionic liquid microemulsion droplets as templates. Colloids Surfaces A Physicochem Eng Asp 346(1–3):229–236

    Article  CAS  Google Scholar 

  10. Lin CH, Chang JH, Yeh YQ, Wu SH, Liu YH, Mou CY (2015) Formation of hollow silica nanospheres by reverse microemulsion. Nanoscale 7(21):9614–9626

    Article  CAS  PubMed  Google Scholar 

  11. Dixit CK, Bhakta S, Kumar A, Suib SL, Rusling JF (2016) Fast nucleation for silica nanoparticle synthesis using a sol-gel method. Nanoscale 8(47):19662–19667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jafarzadeh M, Rahman IA, Sipaut CS (2009) Synthesis of silica nanoparticles by modified sol-gel process: the effect of mixing modes of the reactants and drying techniques. J Sol-Gel Sci Technol 50:328–336

    Article  CAS  Google Scholar 

  13. Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289:125–131

    Article  CAS  PubMed  Google Scholar 

  14. Park SK, Do KK, Kim HT (2002) Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids Surfaces A Physicochem Eng Asp 197(1–3):7–17

    Article  CAS  Google Scholar 

  15. Van Blaaderen A, Van Geest J, Vrij A (1992) Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism. J Colloid Interface Sci 154(2):481–501

    Article  Google Scholar 

  16. Fernandes RS, Raimundo IM, Pimentel MF (2019) Revising the synthesis of Stöber silica nanoparticles: a multivariate assessment study on the effects of reaction parameters on the particle size. Colloids Surfaces A Physicochem Eng Asp 577:1–7

    Article  CAS  Google Scholar 

  17. Dabbaghian M, Babalou A, Hadi P, Jannatdoust E (2010) A parametric study of the synthesis of silica nanoparticles via sol-gel precipitation method. Int J Nanosci Nanotechnol 6(2):104–113

    Google Scholar 

  18. Lindberg R, Sjöblom J, Sundholm G (1995) Preparation of silica particles utilizing the sol-gel and the emulsion-gel processes. Colloids Surfaces A Physicochem Eng Asp 99(1):79–88

    Article  CAS  Google Scholar 

  19. Lei Z, Xiao Y, Dang L, Lu M, You W (2006) Fabrication of ultra-large mesoporous carbon with tunable pore size by monodisperse silica particles derived from seed growth process. Microporous Mesoporous Mater 96(1–3):127–134

    Article  CAS  Google Scholar 

  20. Giesche H (1994) Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics. J Eur Ceram Soc 14(3):189–204

    Article  CAS  Google Scholar 

  21. Khan SA, Günther A, Schmidt MA, Jensen KF (2004) Microfluidic synthesis of colloidal silica. Langmuir. 20:8604–8611

    Article  CAS  PubMed  Google Scholar 

  22. Watts P, Haswell SJ, Pombo-Villar E (2004) Electrochemical effects related to synthesis in microreactors operating under electrokinetic flow. Chem Eng J 101(1–3):237–240

    Article  CAS  Google Scholar 

  23. Puntes VF, Krishnan KM, Alivisatos P (2001) Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ε-co nanoparticles. Appl Phys Lett 78(15):2187–2189

    Article  CAS  Google Scholar 

  24. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117

    Article  CAS  PubMed  Google Scholar 

  25. Wiles C, Watts P (2011) Recent advances in micro reaction technology. Chem Commun 47(23):6512–6535

    Article  CAS  Google Scholar 

  26. Licklider L, Kuhr WG (1994) Optimization of online peptide mapping by capillary zone electrophoresis. Anal Chem 66(24):4400–4407

    Article  CAS  Google Scholar 

  27. Kumar S, Nann T (2006) Shape control of II-VI semiconductor nanomaterials. Small 2(3):316–329

    Article  CAS  PubMed  Google Scholar 

  28. Zhou G, Lü M, Xiu Z, Wang S, Zhang H, Zhou Y et al (2006) Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. J Phys Chem B 110(13):6543–6548

    Article  CAS  PubMed  Google Scholar 

  29. Bandulasena MV, Vladisavljević GT, Odunmbaku OG, Benyahia B (2017) Continuous synthesis of PVP stabilized biocompatible gold nanoparticles with a controlled size using a 3D glass capillary microfluidic device. Chem Eng Sci 171:233–243

    Article  CAS  Google Scholar 

  30. Adamo CB, Junger AS, Bressan LP, da Silva JAF, Poppi RJ, de Jesus DP (2020) Fast and straightforward in-situ synthesis of gold nanoparticles on a thread-based microfluidic device for application in surface-enhanced Raman scattering detection. Microchem J 156:104985

    Article  CAS  Google Scholar 

  31. Bressan LP, Robles-Najar J, Adamo CB, Quero RF, Costa BMC, de Jesus DP et al (2019) 3D-printed microfluidic device for the synthesis of silver and gold nanoparticles. Microchem J 146:1083–1089

    Article  CAS  Google Scholar 

  32. Kolmykov O, Commenge JM, Alem H, Girot E, Mozet K, Medjahdi G et al (2017) Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater Des 122:31–41

    Article  CAS  Google Scholar 

  33. Stolzenburg P, Lorenz T, Dietzel A, Garnweitner G (2018) Microfluidic synthesis of metal oxide nanoparticles via the nonaqueous method. Chem Eng Sci 191:500–510

    Article  CAS  Google Scholar 

  34. Gioria E, Signorini C, Wisniewski F, Gutierrez L (2020) Green synthesis of time-stable palladium nanoparticles using microfluidic devices. J Environ Chem Eng 8(5):104096

    Article  CAS  Google Scholar 

  35. Dai J, Yang X, Hamon M, Kong L (2015) Particle size controlled synthesis of CdS nanoparticles on a microfluidic chip. Chem Eng J 280:385–390

    Article  CAS  Google Scholar 

  36. Dashtimoghadam E, Mirzadeh H, Taromi FA, Nyström B (2013) Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polym (United Kingdom) 54(18):4972–4979

    CAS  Google Scholar 

  37. Ni M, Tresset G, Iliescu C (2017) Self-assembled polysulfone nanoparticles using microfluidic chip. Sensors Actuators B Chem 252:458–462

    Article  CAS  Google Scholar 

  38. Baby T, Liu Y, Middelberg APJ, Zhao CX (2017) Fundamental studies on throughput capacities of hydrodynamic flow-focusing microfluidics for producing monodisperse polymer nanoparticles. Chem Eng Sci 169:128–139

    Article  CAS  Google Scholar 

  39. Balbino TA, Serafin JM, Radaic A, de Jesus MB, de la Torre LG (2017) Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes. Colloids Surfaces B Biointerfaces 152:406–413

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Lee RJ, Huang X, Li Y, Lv B, Wang T et al (2017) Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery. Nanomed Nanotechnol Biol Med 13:371–381

    Article  CAS  Google Scholar 

  41. Hao N, Nie Y, Xu Z, Closson AB, Usherwood T, Zhang JXJ (2019) Microfluidic continuous flow synthesis of functional hollow spherical silica with hierarchical sponge-like large porous shell. Chem Eng J 366:433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jaouhari T, Zhang F, Tassaing T, Fery-Forgues S, Aymonier C, Marre S et al (2020) Process intensification for the synthesis of ultra-small organic nanoparticles with supercritical CO2 in a microfluidic system. Chem Eng J 397:125333

    Article  CAS  Google Scholar 

  43. Hao N, Nie Y, Xu Z, Zhang JXJ (2019) Ultrafast microfluidic synthesis of hierarchical triangular silver core-silica shell nanoplatelet toward enhanced cellular internalization. J Colloid Interface Sci 542:370–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song Y, Hormes J, Kumar CSSR (2008) Microfluidic synthesis of nanomaterials. Small 4(6):698–711

    Article  CAS  PubMed  Google Scholar 

  45. Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4(4):316–321

    Article  CAS  PubMed  Google Scholar 

  46. Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6(2):174–178

    Article  CAS  PubMed  Google Scholar 

  47. Chan EM, Alivisatos AP, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127(40):13854–13861

    Article  CAS  PubMed  Google Scholar 

  48. Lin Y, Jiang H-N, Lin Z-R, Wei K-Z (2013) Application in small-size and band-width of microstrip antenna for ferrocenyl organic magnet/BLT microceramics composites. Gongneng Cailiao/Journal Funct Mater 44(SUPPL.1):153–156

    CAS  Google Scholar 

  49. Mantzaris NV (2005) Liquid-phase synthesis of nanoparticles: particle size distribution dynamics and control. Chem Eng Sci 60(17):4749–4770

    Article  CAS  Google Scholar 

  50. Liu ZM, Yang Y, Du Y, Pang Y (2017) Advances in droplet-based microfluidic technology and its applications. Chinese J Anal Chem 45(2):282–296

    Article  CAS  Google Scholar 

  51. Poe SL, Cummings MA, Haaf MP, McQuade DT (2006) Solving the clogging problem: precipitate-forming reactions in flow. Angew Chemie Int Ed 45(10):1544–1548

    Article  CAS  Google Scholar 

  52. Wacker JB, Lignos I, Parashar VK, Gijs MAM (2012) Controlled synthesis of fluorescent silica nanoparticles inside microfluidic droplets. Lab Chip 12(17):3111–3116

    Article  CAS  PubMed  Google Scholar 

  53. Xu L, Peng J, Yan M, Zhang D, Shen AQ (2016) Droplet synthesis of silver nanoparticles by a microfluidic device. Chem Eng Process Process Intensif 102:186–193

    Article  CAS  Google Scholar 

  54. Chen X, Hu G (2015) Multiphase flow in microfluidic devices. Adv Mech 45(1):55–110

    Google Scholar 

  55. Zhao CX, He L, Qiao SZ, Middelberg APJ (2011) Nanoparticle synthesis in microreactors. Chem Eng Sci 66(7):1463–1479

    Article  CAS  Google Scholar 

  56. Baret JC (2012) Surfactants in droplet-based microfluidics. Lab Chip 12(3):422–433

    Article  CAS  PubMed  Google Scholar 

  57. Kovalchuk NM, Roumpea E, Nowak E, Chinaud M, Angeli P, Simmons MJH (2018) Effect of surfactant on emulsification in microchannels. Chem Eng Sci 176:139–152

    Article  CAS  Google Scholar 

  58. Morsy SMI (2014) Role of surfactants in nanotechnology and their applications. Int J Currr Microbiol Appl Sci 3(5):237–260

    Google Scholar 

  59. Bakshi MS (2016) How surfactants control crystal growth of nanomaterials. Cryst Growth Des 16(2):1104–1133

    Article  CAS  Google Scholar 

  60. Abdulbari HA, Ling FWM, Hassan Z, Thin HJ (2018) Experimental investigations on biopolymer in enhancing the liquid flow in microchannel. Adv Polym Technol 37(8):3136–3145

    Article  CAS  Google Scholar 

  61. Ling FWM, Heidarinik S, Abdulbari HA (2019) Organic additives for the enhancement of laminar flow in a brain-vessels-like microchannel assembly. Chem Eng Technol 42(9):1788–1796

    Article  CAS  Google Scholar 

  62. Azlina HN, Hasnidawani JN, Norita H, Surip SN (2016) Synthesis of SiO2 nanostructures using sol-gel method. Acta Phys Pol A 129(4):842–844

    Article  CAS  Google Scholar 

  63. Shah SIA, Kostiuk LW, Kresta SM (2012) The effects of mixing, reaction rates, and stoichiometry on yield for mixing sensitive reactions - part I: model development. Int J Chem Eng 750162:1–16

    Google Scholar 

  64. Qian JY, Li XJ, Gao ZX, Jin ZJ (2019) Mixing efficiency analysis on droplet formation process in microchannels by numerical methods. Processes 7(33):1–14

    Google Scholar 

  65. Harries N, Burns JR, Barrow DA, Ramshaw C (2003) A numerical model for segmented flow in a microreactor. Int J Heat Mass Transf 46(17):3313–3322

    Article  CAS  Google Scholar 

  66. Dessimoz AL, Cavin L, Renken A, Kiwi-Minsker L (2008) Liquid-liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chem Eng Sci 63(16):4035–4044

    Article  CAS  Google Scholar 

  67. Kaminski TS, Garstecki P (2017) Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem Soc Rev 46:6210–6226

    Article  CAS  PubMed  Google Scholar 

  68. Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19(22):9127–9133

    Article  CAS  Google Scholar 

  69. Joni IM, Nulhakim L, Vanitha M, Panatarani C (2018) Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor. J Phys Conf Ser 1080:012006

    Article  Google Scholar 

  70. Mourhly A, Khachani M, El Hamidi A, Kacimi M, Halim M, Arsalane S (2015) The synthesis and characterization of low-cost mesoporous silica SiO2 from local pumice rock. Nanomater Nanotechnol 5(35):1–7

    Google Scholar 

  71. Dubey RS, Rajesh YBRD, More MA (2015) Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications. Mater Today Proc 2(4–5):3575–3579

    Article  CAS  Google Scholar 

  72. Ghosh P, Juvekar VA (2002) Analysis of the drop rest phenomenon. Chem Eng Res Des 80(7):715–728

    Article  CAS  Google Scholar 

  73. Marsh BM, Iyer K, Cooks RG (2019) Reaction acceleration in electrospray droplets: size, distance, and surfactant effects. J Am Soc Mass Spectrom 30(10):2022–2030

    Article  CAS  PubMed  Google Scholar 

  74. Sagitani H (1981) Making homogeneous and fine droplet O/W emulsions using nonionic surfactants. J Am Oil Chem Soc 58:738–743

    Article  CAS  Google Scholar 

  75. Bahloul B, Lassoued MA, Sfar S (2014) A novel approach for the development and optimization of self emulsifying drug delivery system using HLB and response surface methodology: application to fenofibrate encapsulation. Int J Pharm 466(1–2):341–348

    Article  CAS  PubMed  Google Scholar 

  76. Li C, Mei Z, Liu Q, Wang J, Xu J, Sun D (2010) Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method. Colloids Surfaces A Physicochem Eng Asp 356(1–3):71–77

    Article  CAS  Google Scholar 

  77. Lim C, Basri M, Omar D, Abdul Rahman M, Salleh A, Raja Abdul Rahman R (2011) Physicochemical characterization of nonionic surfactants in oil-in-water (O/W) nano-emulsions for new pesticide formulations. Int J Appl Sci Technol 1(5):131–142

    Google Scholar 

  78. Patil GA, Bari ML, Bhanvase BA, Ganvir V, Mishra S, Sonawane SH (2012) Continuous synthesis of functional silver nanoparticles using microreactor: effect of surfactant and process parameters. Chem Eng Process Process Intensif 62:69–77

    Article  CAS  Google Scholar 

  79. Hecht LL, Wagner C, Landfester K, Schuchmann HP (2011) Surfactant concentration regime in miniemulsion polymerization for the formation of MMA nanodroplets by high-pressure homogenization. Langmuir 27(6):2279–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nikam V, Kotade K, Gaware V, Dolas R, Dhamak K, Somwanshi S et al (2011) Eudragit a versatile polymer: a review. Pharmacologyonline 1:152–164

    Google Scholar 

  81. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913

    Article  CAS  Google Scholar 

  82. Harivardhan Reddy L, Vivek K, Bakshi N, Murthy RSR (2006) Tamoxifen citrate loaded solid lipid nanoparticles (SLN™): preparation, characterization, in vitro drug release, and pharmacokinetic evaluation. Pharm Dev Technol 11(2):167–177

    Article  PubMed  Google Scholar 

  83. Giannone G, Santi M, Ermini ML, Cassano D, Voliani V (2020) A cost-effective approach for non-persistent gold nano-architectures production. Nanomaterials 10(8):1600

    Article  CAS  PubMed Central  Google Scholar 

  84. Dobhal A, Kulkarni A, Dandekar P, Jain R (2017) A microreactor-based continuous process for controlled synthesis of poly-methyl-methacrylate-methacrylic acid (PMMA) nanoparticles. J Mater Chem B 5(18):3404–3417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support from Toray Science Foundation, Japan [19/G34].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayder A. Abdulbari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2931 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, F.W.M., Abdulbari, H.A. & Sim-Yee, C. Investigating the effect of nonionic surfactant on the silica nanoparticles formation and morphology in a microfluidic reactor. J Flow Chem 11, 737–750 (2021). https://doi.org/10.1007/s41981-021-00139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-021-00139-4

Keywords

Navigation