Skip to main content

Advertisement

Log in

Continuous nitration of o-dichlorobenzene in micropacked-bed reactor: process design and modelling

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

The matching of the micro-dispersion method and the reaction kinetics is of the utmost importance for the fast and strongly exothermic nitration reaction. Taken as an example to discuss this issue, a synthesis of 3,4-dichloronitrobenzene via the nitration of o-dichlorobenzene with mixed acid of nitric acid and sulfuric acid was conducted in continuous-flow reactors in this work. Through combining the adiabatic reaction environment, the use of a micropacked-bed reactor, and introducing partial product circulation, it successfully achieved the matching of the micro-dispersion state and the reaction kinetic characteristics. The good two-phase dispersion state can be maintained throughout the micropacked-bed reactor and the reaction can be completed within 5 s with above 89% selectivity under adiabatic condition. Furthermore, the reaction activation energy was conveniently obtained by processing the temperature distribution data, providing a fundamental to realize a reliable design of the nitration reaction process with high efficiency and inherent safety.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bogdan A, McQuade DT (2009) A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor. Beilstein J. Org. Chem. 5:17. https://doi.org/10.3762/bjoc.5.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen P, Shen C, Qiu M, Wu J, Bai Y, Su Y (2020) Synthesis of 5-fluoro-2-nitrobenzotrifluoride in a continuous-flow millireactor with a safe and efficient protocol. J. Flow. Chem. 10(1):207–218. https://doi.org/10.1007/s41981-019-00068-3

    Article  CAS  Google Scholar 

  3. Cheng X, Zhang S (1998) Resparch on the conventional nitration and adiabatic nitration for o-dichlorobenzene mixed acids. J. Shenyang Inst. Technol. 17(1):102–106

    CAS  Google Scholar 

  4. Cox PR, Strachan AN (1971) Two phase nitration of chlorobenzene. Chem. Eng. Sci. 26(7):1013–1018. https://doi.org/10.1016/0009-2509(71)80014-3

    Article  CAS  Google Scholar 

  5. Du C, Wang P, Hu Y, Zhang J, Luo G (2020) Liquid-liquid mass transfer enhancement in milliscale packed beds. Ind. Eng. Chem. Res. 59(9):4048–4057. https://doi.org/10.1021/acs.iecr.9b04225

    Article  CAS  Google Scholar 

  6. Gage JR, Guo X, Tao J, Zheng C (2012) High output continuous nitration. Org. Process. Res. Dev. 16(5):930–933. https://doi.org/10.1021/op2003425

    Article  CAS  Google Scholar 

  7. Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology: a tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem. Int. Ed. 54(23):6688–6728. https://doi.org/10.1002/anie.201409318

    Article  CAS  Google Scholar 

  8. Halder R, Lawal A, Damavarapu R (2007) Nitration of toluene in a microreactor. Catal. Today 125(1–2):74–80. https://doi.org/10.1016/j.cattod.2007.04.002

    Article  CAS  Google Scholar 

  9. Jiang D, Jue W (1998) 3,4-Dichloronitrobenzene synthesis process improvement. Zhejiang Chem. Ind. 29(4):25–28

    Google Scholar 

  10. von Keutz T, Cantillo D, Kappe CO (2019) Enhanced mixing of biphasic liquid-liquid systems for the synthesis of gem-dihalocyclopropanes using packed bed reactors. J. Flow. Chem. 9(1):27–34. https://doi.org/10.1007/s41981-018-0026-1

    Article  CAS  Google Scholar 

  11. Kulkarni AA (2014) Continuous flow nitration in miniaturized devices. Beilstein J. Org. Chem. 10:405–424. https://doi.org/10.3762/bjoc.10.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li L, Yao C, Jiao F, Han M, Chen G (2017) Experimental and kinetic study of the nitration of 2-ethylhexanol in capillary microreactors. Chem. Eng. Process. 117:179–185. https://doi.org/10.1016/j.cep.2017.04.005

    Article  CAS  Google Scholar 

  13. Lu YC, Zhu S, Wang K, Luo GS (2016) Simulation of the mixing process in a straight tube with sudden changed cross-section. Chin. J. Chem. Eng. 24(6):711–718. https://doi.org/10.1016/j.cjche.2016.01.011

    Article  CAS  Google Scholar 

  14. Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV (2016) Taming hazardous chemistry by continuous flow technology. Chem. Soc. Rev. 45(18):4892–4928. https://doi.org/10.1039/c5cs00902b

    Article  CAS  PubMed  Google Scholar 

  15. Noel T, Kuhn S, Musacchio AJ, Jensen KF, Buchwald SL (2011) Suzuki-Miyaura cross-coupling reactions in flow: multistep synthesis enabled by a microfluidic extraction. Angew. Chem. Int. Ed. 50(26):5943–5946. https://doi.org/10.1002/anie.201101480

    Article  CAS  Google Scholar 

  16. Olah GA, Malhotra R, Narang SC (1989) Nitration: methods and mechanisms. Wiley, New York

    Google Scholar 

  17. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) The Hitchhiker’s guide to flow chemistry. Chem. Rev. 117(18):11796–11893. https://doi.org/10.1021/acs.chemrev.7b00183

    Article  CAS  PubMed  Google Scholar 

  18. Quadros PA, Oliveira NMC, Baptista C (2005) Continuous adiabatic industrial benzene nitration with mixed acid at a pilot plant scale. Chem. Eng. J. 108(1–2):1–11. https://doi.org/10.1016/j.cej.2004.12.022

    Article  CAS  Google Scholar 

  19. Russo D, Tomaiuolo G, Andreozzi R, Guido S, Lapkin AA, Di Somma I (2019) Heterogeneous benzaldehyde nitration in batch and continuous flow microreactor. Chem. Eng. J. 377:120346. https://doi.org/10.1016/j.cej.2018.11.044

    Article  CAS  Google Scholar 

  20. Sang L, Feng X, Tu J, Xie B, Luo G, Zhang J (2020) Investigation of external mass transfer in micropacked bed reactors. Chem. Eng. J. 393:124793. https://doi.org/10.1016/j.cej.2020.124793

    Article  CAS  Google Scholar 

  21. Schöfield K (1980) Aromatic Nitration. Cambridge University, Cambridge

    Google Scholar 

  22. Sharma M, Acharya RB, Kulkarni AA (2019) Exploring the steady operation of a continuous pilot plant for the di-nitration reaction. Chem. Eng. Technol. 42(10):2241–2251. https://doi.org/10.1002/ceat.201900140

    Article  CAS  Google Scholar 

  23. Su Y, Zhao Y, Chen G, Yuan Q (2010) Liquid-liquid two-phase flow and mass transfer characteristics in packed microchannels. Chem. Eng. Sci. 65(13):3947–3956. https://doi.org/10.1016/j.ces.2010.03.034

    Article  CAS  Google Scholar 

  24. Su Y, Zhao Y, Jiao F, Chen G, Yuan Q (2011) The intensification of rapid reactions for multiphase systems in a microchannel reactor by packing microparticles. AICHE J. 57(6):1409–1418. https://doi.org/10.1002/aic.12367

    Article  CAS  Google Scholar 

  25. Su Y, Chen G, Yuan Q (2011) Ideal micromixing performance in packed microchannels. Chem. Eng. Sci. 66(13):2912–2919. https://doi.org/10.1016/j.ces.2011.03.024

    Article  CAS  Google Scholar 

  26. Tu J, Sang L, Cheng H, Ai N, Zhang J (2020) Continuous hydrogenolysis of n-diphenylmethyl groups in a micropacked-bed reactor. Org. Process. Res. Dev. 24(1):59–66. https://doi.org/10.1021/acs.oprd.9b00416

    Article  CAS  Google Scholar 

  27. Wang W, Yu Z (2017) Continuous synthesis of 3,4-dichloronitrobenzene. Zhejiang Chem. Ind. 48(5):28–31

    Google Scholar 

  28. Wang K, Li L, Xie P, Luo G (2017) Liquid-liquid microflow reaction engineering. React. Chem. Eng. 2(5):611–627. https://doi.org/10.1039/c7re00082k

    Article  CAS  Google Scholar 

  29. Wen Z, Jiao F, Yang M, Zhao S, Zhou F, Chen G (2017) Process development and scale-up of the continuous flow nitration of trifluoromethoxybenzene. Org. Process. Res. Dev. 21(11):1843–1850. https://doi.org/10.1021/acs.oprd.7b00291

    Article  CAS  Google Scholar 

  30. Wen Z, Yang M, Zhao S, Zhou F, Chen G (2018) Kinetics study of heterogeneous continuous-flow nitration of trifluoromethoxybenzene. React. Chem. Eng. 3(3):379–387. https://doi.org/10.1039/c7re00182g

    Article  CAS  Google Scholar 

  31. Yao XJ, Zhang Y, Du LY, Liu JH, Yao JF (2015) Review of the applications of microreactors. Renew. Sust. Energ. Rev. 47:519–539. https://doi.org/10.1016/j.rser.2015.03.078

    Article  CAS  Google Scholar 

  32. Yu Z, Zhou P, Liu J, Wang W, Yu C, Su W (2016) Continuous-flow process for selective mononitration of 1-methyl-4-(methylsulfonyl)benzene. Org. Process. Res. Dev. 20(2):199–203. https://doi.org/10.1021/acs.oprd.5b00374

    Article  CAS  Google Scholar 

  33. Yu Z, Xu Q, Liu L, Wu Z, Huang J, Lin J, Su W (2020) Dinitration of o-toluic acid in continuous-flow: process optimization and kinetic study. J. Flow. Chem. 10(2):429–436. https://doi.org/10.1007/s41981-020-00078-6

    Article  CAS  Google Scholar 

  34. Yue J (2018) Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal. Today 308:3–19. https://doi.org/10.1016/j.cattod.2017.09.041

    Article  CAS  Google Scholar 

  35. Zhang JS, Zhang CY, Liu GT, Luo GS (2016) Measuring enthalpy of fast exothermal reaction with infrared thermography in a microreactor. Chem. Eng. J. 295:384–390. https://doi.org/10.1016/j.cej.2016.01.100

    Article  CAS  Google Scholar 

  36. Zhang C, Zhang J, Luo G (2020) Kinetics determination of fast exothermic reactions with infrared thermography in a microreactor. J. Flow. Chem. 10(1):219–226. https://doi.org/10.1007/s41981-019-00071-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant (21422603, U1662120, 21978152).

Funding

This work was supported by the National Natural Science Foundation of China under Grant (21422603, U1662120, 21978152).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Yangcheng Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Highlights

• Study apparent reaction kinetic of the nitration of o-dichlorobenzene under various micro-dispersion methods.

• Proposed strategy combination of the adiabatic and micropacked-bed reactor for process intensification and control.

• Enable rapid determination of activation energy by the measurement of adiabatic temperature rise.

Supplementary Information

ESM 1

(DOCX 6660 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Z., Lu, Y. Continuous nitration of o-dichlorobenzene in micropacked-bed reactor: process design and modelling. J Flow Chem 11, 171–179 (2021). https://doi.org/10.1007/s41981-020-00132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-020-00132-3

Keywords

Navigation