Skip to main content
Log in

Efficient scale up of photochemical bromination of conjugated allylic compounds in continuous-flow

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

A continuous-flow process for the bromination of conjugated allylic compounds with N-bromosuccinimide (NBS) is developed. The reaction was optimized in a self-made continuous-flow photoreactor based on a commercially available household lamp. The productivity of this continuous step attains 70.5 g/h under the optimal conditions. Compared to batch-mode synthesis, the conversion rate and selectivity of this flow-mode was significantly improved. In addition, the reaction time could be significantly reduced from a few hours to a few minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Wohl A (1919) Bromierung ungesättigter Verbindungen mit N-Brom-acetamid, ein Beitrag zur Lehre vom Verlauf chemischer Vorgänge. Ber Dtsch Chem Ges 52(1):51–63

    Article  Google Scholar 

  2. Ziegler K, Spath A, Schaaf E, Schumann W, Winkelmann E (1942) Die Halogenierung unges? ttigter Substanzen in der Allylstellung. Justus Liebigs Ann Chem 551(1):80–119

    Article  CAS  Google Scholar 

  3. Togo H, Hirai T (2003) Environmentally-friendly Wohl-Ziegler bromination: ionic-liquid reaction and solvent-free reaction. Synlett 5:0702–0704

    Article  Google Scholar 

  4. Kaneko H, Saito J, Kawahara N, Matsuo S, Matsugi T, Kashiwa N (2009) Synthesis and characterization of polypropylene-based block copolymers possessing polar segments via controlled radical polymerization. J Polym Sci A Polym Chem 47(3):812–823

    Article  CAS  Google Scholar 

  5. Lunt MF, Park S, Li S, Henne S, Manning AJ, Ganesan AL, Simpson IJ, Blake DR, Liang Q, O'Doherty S, Harth CM, Mühle J, Salameh PK, Weiss RF, Krummel PB, Fraser PJ, Prinn RG, Reimann S, Rigby M (2018) Continued emissions of the ozone-depleting substance carbon tetrachloride from eastern Asia. Geophys Res Lett 45(20)

  6. Sherry D, McCulloch A, Liang Q, Reimann S, Newman PA (2018) Current sources of carbon tetrachloride (CCl4) in our atmosphere. Environ Res Lett 13(2):024004

    Article  CAS  Google Scholar 

  7. Mestres R, Palenzuela J (2002) High atomic yield bromine-less benzylic bromination. Green Chem 4(4):314–316

    Article  CAS  Google Scholar 

  8. Amijs CHM, van Klink GPM, van Koten G (2003) Carbon tetrachloride free benzylic brominations of methyl aryl halides. Green Chem 5(4):470–474

    Article  CAS  Google Scholar 

  9. Walter C, Fallows N, Kesharwani T (2019) Copper-catalyzed electrophilic chlorocyclization reaction using sodium chloride as the source of electrophilic chlorine. ACS Omega 4(4):6538–6545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li L, Li Y, Zhao Z, Luo H, Ma YN (2019) Facial syntheses of bromobenzothiazines via catalyst-free tandem C-H amination/bromination in water. Org Lett 21(15):5995–5999

    Article  CAS  PubMed  Google Scholar 

  11. Sequeiros A, Serrano L, Labidi J (2016) Bromination of guaiacol and syringol using ionic liquids to obtain bromides. J Chem Technol Biotechnol 91(6):1809–1815

    Article  CAS  Google Scholar 

  12. Wang GW, Gao J (2012) Solvent-free bromination reactions with sodium bromide and oxone promoted by mechanical milling. Green Chem 14(4):1125–1131

    Article  CAS  Google Scholar 

  13. Indukuri DR, Potuganti GR, Alla M (2019) Hypervalent iodine mediated efficient solvent-free regioselective halogenation and thiocyanation of fused N-heterocycles. Synlett 30(13):1573–1579

    Article  CAS  Google Scholar 

  14. Saikia I, Borah AJ, Phukan P (2016) Use of bromine and bromo-organic compounds in organic synthesis. Chem Rev 116(12):6837–7042

    Article  CAS  PubMed  Google Scholar 

  15. O’Brien M, Baxendale IR, Ley SV (2010) Flow ozonolysis using a semipermeable teflon AF-2400 membrane to effect gas-liquid contact. Org Lett 12(7):1596–1598

    Article  PubMed  CAS  Google Scholar 

  16. Sambiagio C, Noël T (2020) Flow photochemistry: shine some light on those tubes! Trends Chem 2(2):92–106

    Article  CAS  Google Scholar 

  17. Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T (2016) Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem Rev 116(17):10276–10341

    Article  PubMed  CAS  Google Scholar 

  18. Wriedt B, Ziegenbalg D (2020) Common pitfalls in chemical actinometry. J Flow Chem 10(1):295–306

    Article  Google Scholar 

  19. Williams JD, Oliver Kappel C (2020) Recent advances toward sustainable flow photochemistry. Curr Opin Green Sustain Chem 25:100351

    Article  Google Scholar 

  20. Su Y, Straathof NJW, Hessel V, Noël T (2014) Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications. Chem Eur J 20(34):10562–10589

    Article  CAS  PubMed  Google Scholar 

  21. Noël T (2017) A personal perspective on the future of flow photochemistry. J Flow Chem 7(3–4):87–93

    Article  CAS  Google Scholar 

  22. Steiner A, Roth PMC, Strauss FJ, Gauron G, Tekautz G, Winter M, Williams JD, Kappe CO (2020a) Multikilogram per hour continuous photochemical benzylicbrominations applying a smart dimensioning scale-up strategy. Org Process Res Dev ASAP. https://doi.org/10.1021/acs.oprd.0c00239

  23. O'Brien M, Cooper D (2015) Continuous-flow liquid-liquid separation using a computer-vision control system: the bromination of enaminones with n-bromosuccinimide. Cheminform 27(1):164–168

    Google Scholar 

  24. Van Waes FEA, Seghers S, Dermaut W, Cappuyns B, Stevens CV (2014) Efficient continuous-flow bromination of methylsulfones and methanesulfonates and continuous synthesis of hypobromite. J Flow Chem 4(3):118–124

    Article  CAS  Google Scholar 

  25. Van Kerrebroeck R, Naert P, Heugebaert TSA, D’hooghe M, Stevens CV (2019) Electrophilic bromination in flow: a safe and sustainable alternative to the use of molecular bromine in batch. Molecules 24(11):2116

    Article  PubMed Central  CAS  Google Scholar 

  26. McMullen JP, Marton CH, Sherry BD, Spencer G, Kukura J, Eyke NS (2018) Development and scale-up of a continuous reaction for production of an active pharmaceutical ingredient intermediate. Org Process Res Dev 22(9):1208–1213

    Article  CAS  Google Scholar 

  27. Berton M, de Souza JM, Abdiaj I, McQuade DT, Snead DR (2020) Scaling continuous api synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. J Flow Chem 10(1):73–92

    Article  Google Scholar 

  28. Mansur EA, Ye M, Wang Y, Dai Y (2008) A state-of-the-art review of mixing in microfluidic mixers. Chin J Chem Eng 16(4):503–516

    Article  CAS  Google Scholar 

  29. Baumann M, Baxendale IR (2016) Continuous photochemistry: the flow synthesis of ibuprofen via a photo-Favorskii rearrangement. React Chem Eng 1(2):147–150

    Article  CAS  Google Scholar 

  30. Hone CA, Kappe CO (2018) The use of molecular oxygen for liquid phase aerobic oxidations in continuous-flow. Topics Curr Chem 377(2):67–110

    Google Scholar 

  31. Govaerts S, Nyuchev A, Noël T (2020) Pushing the boundaries of C-H bond functionalization chemistry using flow technology. J Flow Chem 10(1):13–71

    Article  CAS  Google Scholar 

  32. Steiner A, Williams J, de Frutos O, Rincón JA, Mateos C, Kappe CO (2020b) Continuous photochemical benzylic bromination using in situ generated Br2: process intensification towards optimal PMI and throughput. Green Chem 22(2):448–454

    Article  CAS  Google Scholar 

  33. Otake Y, Williams JD, Rincón JAA, de Frutos O, Mateos C, Kappe CO (2019) Photochemical benzylic bromination in flow using BrCCl3 and its application to telescoped p-methoxybenzyl protection. Org Biomol Chem 17(6):1384–1388

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y, de Frutos O, Mateos C, Rincon JA, Cantillo D, Kappe CO (2018) Continuous-flow photochemical benzylic bromination of a key intermediate in the synthesis of a 2-oxazolidinone. ChemPhotoChem 2(10):906–912

    Article  CAS  Google Scholar 

  35. Cantillo D, Kappe CO (2017) Halogenation of organic compounds using continuous-flow and microreactor technology. React Chem Eng 2(1):7–19

    Article  CAS  Google Scholar 

  36. Heylen S, Smet S, Laurier KGM, Hofkens J, Roeffaers MBJ, Martens JA (2012) Selective photocatalytic oxidation of gaseous ammonia to dinitrogen in a continuous-flow reactor. Catal Sci Technol 2(9):1802–1805

    Article  CAS  Google Scholar 

  37. Cantillo D, de Frutos O, Rincon JA, Mateos C, Kappe CO (2013) A scalable procedure for light-induced benzylic brominations in continuous-flow. J Org Chem 79(1):223–229

    Article  PubMed  CAS  Google Scholar 

  38. Ferreira M, Assunção LS, Silva AH, Filippin-Monteiro FB, Creczynski-Pasa TB, Sá MM (2017) Allylic isothiouronium salts: the discovery of a novel class of thiourea analogues with antitumor activity. Eur J Med Chem 129:151–158

    Article  CAS  PubMed  Google Scholar 

  39. Wessjohann LA, Wild H, Ferreira LA, Schrekker HS (2016) Synthesis of α-alkenyl-β-hydroxy adducts by α-addition of unprotected 4-bromocrotonic acid and amides with aldehydes and ketones by chromium (II)-mediated reactions. Appl Organomet Chem 30(8):674–679

    Article  CAS  Google Scholar 

  40. Hook BDA, Dohle W, Hirst PR, Pickworth M, Berry MB, Booker-Milburn KI (2005) A practical flow reactor for continuous organic photochemistry. J Org Chem 70(19):7558–7564

    Article  CAS  PubMed  Google Scholar 

  41. Rupp H, Zarain-Herzberg A, Maisch B (2002) The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz 27(7):621–636

    Article  PubMed  Google Scholar 

  42. Adams DJ, Beveridge DJ, van der Weyden L, Mangs H, Leedman PJ, Morris BJ (2003) HADHB, HuR, and CP1 bind to the distal 3′-untranslated region of human renin mRNA and differentially modulate renin expression. J Biol Chem 278(45):44894–44903

    Article  CAS  PubMed  Google Scholar 

  43. Bonfield HE, Williams JD, Ooi WX, Leach SG, Kerr WJ, Edwards LJ (2018) A detailed study of irradiation requirements towards an efficient photochemical Wohl-Ziegler procedure in flow. ChemPhotoChem 2(10):938–944

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Natural Science Foundation of China (No. 21776254) and Natural Science Foundation of Zhejiang Province (No. LQ20B060006) for financial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Li.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Development of conjugated allylic brominations reaction in continuous-flow with high conversion rate, selectivity and productivity.

Optimized the process parameters experiments approach.

Designed a new type of reaction device.

Electronic supplementary material

ESM 1

(DOCX 2924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Chen, Z., He, Y. et al. Efficient scale up of photochemical bromination of conjugated allylic compounds in continuous-flow. J Flow Chem 11, 127–134 (2021). https://doi.org/10.1007/s41981-020-00116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-020-00116-3

Keywords

Navigation