Skip to main content


Log in

A facile iron catalyzed cross-coupling reaction under micro-flow conditions

  • Communications
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript


The iron-catalyzed cross-coupling reaction between an aromatic Grignard reagent and a haloalkane was investigated under micro-flow conditions. The reaction proceeded smoothly by the separate feeding of the substrate solutions to give the desired cross-coupling product. Compared to the previously reported batch reaction, the effect of additives was more predominant in the micro-flow reaction. The flow reactor system appears to contribute to the stabilization and rapid trapping of the unstable catalytic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1


  1. Bolm C, Legros J, Laih JL, Zani L (2004). Chem Rev 104:6217–6254

    Article  CAS  Google Scholar 

  2. Nakamura M, Matsuo K, Ito S, Nakamura E (2004). J. Am Chem. Soc 126:3686–3687

    Article  CAS  Google Scholar 

  3. Martin R, Fürstner A (2004). Angew Chem Int Ed 43:3955

    Article  CAS  Google Scholar 

  4. Nagano T, Hayashi T (2004). Org Lett 6:1297

    Article  CAS  Google Scholar 

  5. Bedford RB, Bruce DW, Frost RM, Hird M (2005). Chem Commun:4161

  6. Bedford RB, Betham M, Bruce DW, Danopoulos AA, Frost RM, Hird M (2006). J Org Chem 71:1104–1110

    Article  CAS  Google Scholar 

  7. Matsubara Y, Yamaguchi T, Hashimoto T, Yamaguchi Y (2017). Polyhedron 128:198–202

    Article  CAS  Google Scholar 

  8. Bica K, Gaertner P (2006). Org Lett 8:733–735

    Article  CAS  Google Scholar 

  9. Hatakeyama H, Fujiwara Y, Okada Y, Itoh T, Hashimoto T, Kawamura S, Ogata K, Takaya H, Nakamura M (2011). Chem Lett 40:1030–1032

    Article  CAS  Google Scholar 

  10. Plutshack MB, Pieber B, Gilmore K, Seeberger PH (2017). Chem Rev 117:11796–11893

    Article  Google Scholar 

  11. Vaccaro L, Lanari D, Marrocchi A, Strappaveccia G (2014). Green Chem 16:3680–3704

    Article  CAS  Google Scholar 

  12. Newman SG, Jensen KF (2013). Green Chem 15:1456–1472

    Article  CAS  Google Scholar 

  13. Protasova LN, Bulut M, Ormerod D, Buekenhoudt A, Berton J, Stevens CV (2013). Org Process Res Dev 17:760–791

    Article  CAS  Google Scholar 

  14. Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT (2007). Chem Rev 107:2300–2318

    Article  CAS  Google Scholar 

  15. Mizuno K, Nishiyama Y, Ogaki T, Terao K, Ikeda H, Kakiuchi K (2016). J Photochem Photobiol C Photochem Rev 29:107–147

    Article  CAS  Google Scholar 

  16. Fanelli F, Parisi G, Degennaro L, Luisi R (2017). Beilstein J Org Chem 13:520–542

    Article  CAS  Google Scholar 

  17. Pieber B, Shalom M, Antonietti M, Seeberger H, Gilmore K (2018). Angew Chem Int Ed 57:9976–9979

    Article  CAS  Google Scholar 

  18. Kim H, Min K-I, Inoue K, Im DJ, Kim D-P, Yoshida J (2016). Science 352:691–694

    Article  CAS  Google Scholar 

  19. Kawaguchi T, Miyata H, Ataka K, Mae K, Yoshida J (2005). Angew Chem Int Ed 44:2413–2416

    Article  CAS  Google Scholar 

  20. Tanaka K, Motomatsu S, Koyama K, Tanaka S, Fukase K (2007). Org Lett 9:299–302

    Article  CAS  Google Scholar 

  21. Suga S, Nagaki A, Yoshida J (2003). Chem Commun:354–355

  22. Nakgaki A, Togai M, Suga S, Aoki N, Mae K, Yoshida J (2005). J Am Chem Soc 127:11666–11675

    Article  Google Scholar 

  23. Fukuyama T, Kobayashi M, Rahman MT, Kamata N, Ryu I (2008). Org Lett 10:533–536

    Article  CAS  Google Scholar 

  24. Uozumi Y, Yamada YMA, Beppu T, Fukuyama N, Ueno M, Kitamori T (2006). J Am Chem Soc 128:15994–15995

    Article  CAS  Google Scholar 

  25. Ushiogi Y, Hase T, Iinuma Y, Tanaka A, Yoshida J (2007). Chem Commun:2947–2949

  26. Noda D, Sunada Y, Hatakeyama T, Nakamura M, Nagashima H (2009). J Am Chem Soc 131:6078–6079

    Article  CAS  Google Scholar 

  27. Buono FG, Zhang Y, Tan Z, Brusoe A, Yang BS, Lorenz JC, Giovannini RJJ, Song JJ, Yee NK, Senanayake CH (2016). Eur. J. Org. Chem 2016:2599–2602

    Article  CAS  Google Scholar 

  28. Deng Y, Wei X-J, Wang X, Sun Y, Noël T (2019). Chem Eur J 25:14532–14535

    Article  CAS  Google Scholar 

  29. Wei XJ, Abdiaj I, Sambiagio DC, Li C, Zysman-Colman DE, Aláczar DJ, Noël T (2019). Angew Chem Int Ed 58:13030–13034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Koji Machitani or Hajime Mori.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machitani, K., Tanaka, Y., Nishiyama, Y. et al. A facile iron catalyzed cross-coupling reaction under micro-flow conditions. J Flow Chem 10, 491–495 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: