Minireview: Flow chemistry studies of high-pressure gas-liquid reactions with carbon monoxide and hydrogen

Abstract

Tube-in-tube flow reactors are emerging as a highly efficient flow chemistry strategy for performing various types of gas-liquid reactions due to their unique characteristics, such as high specific interfacial area, enhanced mass transfer and mixing, reduced material consumption, and safe handling of toxic and flammable gases. In this article we discuss the most recent advancements in utilizing tube-in-tube flow reactors for fundamental and applied studies of high-pressure gas-liquid reactions with carbon monoxide, hydrogen, and syngas. General guidelines for successful assembly of such flow chemistry platforms are discussed. In addition, a perspective on future potential directions for further development of the tube-in-tube flow reactors such as scale-up and increased robustness are provided.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Brzozowski M et al (2015) Flow Chemistry: intelligent processing of gas–liquid transformations using a tube-in-tube reactor. Acc Chem Res 48(2):349–362

    CAS  Article  Google Scholar 

  2. 2.

    Mallia CJ, Baxendale IR (2015) The use of gases in flow synthesis. Org Process Res Dev 20(2):327–360

    Article  Google Scholar 

  3. 3.

    Yang L, Jensen KF (2013) Mass transport and reactions in the tube-in-tube reactor. Org Process Res Dev 17(6):927–933

    CAS  Article  Google Scholar 

  4. 4.

    Protasova LN et al (2013) Latest highlights in liquid-phase reactions for organic synthesis in microreactors. Org Process Res Dev 17(5):760–791

    CAS  Article  Google Scholar 

  5. 5.

    Yoshida Ji, Kim H, Nagaki A (2011) Green and sustainable chemical synthesis using flow microreactors. ChemSusChem 4(3):331–340

    CAS  Article  Google Scholar 

  6. 6.

    Wu G et al (2015) Continuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactor. Ind Eng Chem Res 54(16):4183–4189

    CAS  Article  Google Scholar 

  7. 7.

    Greene JF et al (2015) PTFE-membrane flow reactor for aerobic oxidation reactions and its application to alcohol oxidation. Org Process Res Dev 19(7):858–864

    CAS  Article  Google Scholar 

  8. 8.

    Koos P et al (2011) Teflon AF-2400 mediated gas–liquid contact in continuous flow methoxycarbonylations and in-line FTIR measurement of CO concentration. Organic & Biomolecular chemistry 9(20):6903–6908

    CAS  Article  Google Scholar 

  9. 9.

    O'Brien M et al (2011) Hydrogenation in flow: homogeneous and heterogeneous catalysis using Teflon AF-2400 to effect gas–liquid contact at elevated pressure. Chem Sci 2(7):1250–1257

    CAS  Article  Google Scholar 

  10. 10.

    Brancour C et al (2013) Modernized low pressure carbonylation methods in batch and flow employing common acids as a CO source. Org Lett 15(11):2794–2797

    CAS  Article  Google Scholar 

  11. 11.

    Charpentier, J.-C., Mass-transfer rates in gas-liquid absorbers and reactors, in Advances in chemical engineering. 1981, Elsevier. p. 1–133

  12. 12.

    Dłuska E, Wroński S, Ryszczuk T (2004) Interfacial area in gas–liquid Couette–Taylor flow reactor. Exp Thermal Fluid Sci 28(5):467–472

    Article  Google Scholar 

  13. 13.

    Herskowits D et al (1990) Characterization of a two-phase impinging jet absorber—II. Absorption with chemical reaction of CO2 in NaOH solutions. Chem Eng Sci 45(5):1281–1287

    CAS  Article  Google Scholar 

  14. 14.

    Kies FK, Benadda B, Otterbein M (2004) Experimental study on mass transfer of a co-current gas–liquid contactor performing under high gas velocities. Chem Eng Process Process Intensif 43(11):1389–1395

    CAS  Article  Google Scholar 

  15. 15.

    Heyouni A, Roustan M, Do-Quang Z (2002) Hydrodynamics and mass transfer in gas–liquid flow through static mixers. Chem Eng Sci 57(16):3325–3333

    CAS  Article  Google Scholar 

  16. 16.

    Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54(23):6688–6728

    CAS  Article  Google Scholar 

  17. 17.

    Mercadante MA et al (2012) Continuous flow hydrogenation using an on-demand gas delivery reactor. Org Process Res Dev 16(5):1064–1068

    CAS  Article  Google Scholar 

  18. 18.

    Gross U et al (2014) A general continuous flow method for palladium catalysed Carbonylation reactions using single and multiple tube-in-tube gas-liquid microreactors. Eur J Org Chem 2014(29):6418–6430

    CAS  Article  Google Scholar 

  19. 19.

    Polyzos A et al (2011) The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor. Angew Chem Int Ed 50(5):1190–1193

    CAS  Article  Google Scholar 

  20. 20.

    Available from: https://www.swagelok.com/en/catalog/Product/Detail?part=SS-200-3

  21. 21.

    Available from: https://www.vapourtec.com/products/flow-reactors/gas-addition-features/

  22. 22.

    Zhu C et al (2018) Flow chemistry-enabled studies of rhodium-catalyzed hydroformylation reactions. Chem Commun 54(62):8567–8570

    CAS  Article  Google Scholar 

  23. 23.

    Available from: https://www.cambridgereactordesign.com/tube-in-tube-reactor/gastropod-membrane-reactor.html

  24. 24.

    Hong, Z. and S. Weber, Teflon AF Materials in Topics in Current Chemistry, Vol. 308. 2012, Springer, Berlin

  25. 25.

    O’Brien M, Baxendale IR, Ley SV (2010) Flow ozonolysis using a semipermeable Teflon AF-2400 membrane to effect gas− liquid contact. Org Lett 12(7):1596–1598

    Article  Google Scholar 

  26. 26.

    Pinnau I, Toy LG (1996) Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2, 2-bistrifluoromethyl-4, 5-difluoro-1, 3-dioxole/tetrafluoroethylene. J Membr Sci 109(1):125–133

    CAS  Article  Google Scholar 

  27. 27.

    Available from: http://www.biogeneral.com/teflon-af/

  28. 28.

    Bondar V, Freeman BD, Yampolskii YP (1999) Sorption of gases and vapors in an amorphous glassy perfluorodioxole copolymer. Macromolecules 32(19):6163–6171

    CAS  Article  Google Scholar 

  29. 29.

    Mercadante MA, Leadbeater NE (2011) Continuous-flow, palladium-catalysed alkoxycarbonylation reactions using a prototype reactor in which it is possible to load gas and heat simultaneously. Organic & biomolecular chemistry 9(19):6575–6578

    CAS  Article  Google Scholar 

  30. 30.

    Hansen SV et al (2016) Controlled generation and use of CO in flow. Reaction Chemistry & Engineering 1(3):280–287

    CAS  Article  Google Scholar 

  31. 31.

    Sax, N.I., Dangerous properties of industrial materials. 1989

    Google Scholar 

  32. 32.

    Fischer F, Tropsch H (1926) Die Erdölsynthese bei gewöhnlichem Druck aus den Vergasungsprodukten der Kohlen. Brennst Chem 7:97–104

    CAS  Google Scholar 

  33. 33.

    Adkins H, Krsek G (1949) Hydroformylation of unsaturated compounds with a cobalt carbonyl catalyst. J Am Chem Soc 71(9):3051–3055

    CAS  Article  Google Scholar 

  34. 34.

    Newton S et al (2012) Asymmetric homogeneous hydrogenation in flow using a tube-in-tube reactor. Advanced Synthesis & Catalysis 354(9):1805–1812

    CAS  Article  Google Scholar 

  35. 35.

    Kasinathan S et al (2011) Syngas-mediated CC bond formation in flow: selective rhodium-catalysed hydroformylation of styrenes. Synlett 2011(18):2648–2651

    Article  Google Scholar 

  36. 36.

    Su Y et al (2016) A convenient numbering-up strategy for the scale-up of gas–liquid photoredox catalysis in flow. Reaction Chemistry & Engineering 1(1):73–81

    CAS  Article  Google Scholar 

  37. 37.

    Ahn G-N et al (2019) Numbering-up metal microreactor for high-throughput production of commercial drug by copper catalysis. Lab Chip

  38. 38.

    Wu G et al (2019) Continuous flow aerobic oxidation of benzyl alcohol on Ru/Al2O3 catalyst in a flat membrane microchannel reactor: an experimental and modelling study. Chem Eng Sci 201:386–396

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milad Abolhasani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramezani, M., Kashfipour, M.A. & Abolhasani, M. Minireview: Flow chemistry studies of high-pressure gas-liquid reactions with carbon monoxide and hydrogen. J Flow Chem 10, 93–101 (2020). https://doi.org/10.1007/s41981-019-00059-4

Download citation

Keywords

  • Process intensification
  • Tube-in-tube reactor
  • Gas delivery