Abstract
This work reports the preparation of propranolol according to a flow process. Propranolol has been prepared paying attention to tackle the formation of the by-product tertiary amine, resulting from an additional ring opening of the starting epoxide. Remarkably, the use of catalytic amount of water resulted beneficial for the yield and purity of the desired propranolol, and to substantially reducing the amount of tertiary amine byproduct. The high concentration of the solutions allowed for a productivity of several grams/h.
Similar content being viewed by others
References
“Propranolol hydrochloride”, Monograph, The American Society of Health-System Pharmacists, retrieved Jan 1, 2015
Kaiser C, Jen T, Garvey E, Bowen WD (1977). J Med Chem 20:687–689
Crowther AF, Smith LH (1968). J Med Chem 11:1009–1013
Cox MT, Jaggers SE, Jones G (1978). J Med Chem 21:182–188
Xuan F, Lin F, Jun L, Xuli W, Yong W (2015). CN104961642A
Prat D, Pardigon O, Flemming H-W, Letestu S, Ducandas V, Isnard P, Guntrum E, Senac T, Ruisseau S, Cruciani P, Hosek P (2013). Org Process Res Dev 17:1517–1525
Lizza JR, Moura-Letts G (2017). Synthesis 49:1231–1242
Shivani BP, Asit KC (2007). J Org Chem 72:3713–3722
Tacon C, Guantai EM, Smith PJ, Chibale K (2012). Bioorg Med Chem 20:893–902
Zeng P, Liu D, Wu J, He L (2018). CN107556203
Prathap KJ, Wu Q, Olsson RT, Dinér P (2017). Org Lett 19:4746–4749
Jadhav GP, Kasture VS, Pawar SS, Vadgaonkar AR, Lodha AP, Tuse SK, Kajale HR, Borbane SA (2014). J Pharm Res 8:696–706
Colella M, Carlucci C, Luisi R (2018). Top Curr Chem 376:46
De Angelis S, Carlucci C, de Candia M, Rebuzzini G, Celestini P, Riscazzi M, Luisi R, Degennaro L (2018). Catal Today 308:81–85
De Angelis S, De Renzo M, Carlucci C, Degennaro L, Luisi R (2016). Org Biomol Chem 14:4304–4311
Fanelli F, Parisi G, Degennaro L, Luisi R (2017). Beilstein J Org Chem 13:520–542
Morodo R, Gérardy R, Petita G, Monbaliu J-CM (2019). Green Chem. https://doi.org/10.1039/C9GC01819K
Russell MG, Jamison TF (2019). Angew Chem Int Ed 58:7678–7881
Cossar PJ, Baker JR, Cain N, McCluskey A (2018). R Soc Open Sci 5:171190
Gérardy R, Emmanuel N, Toupy T, Kassin V-E, Tshibalonza NN, Schmitz M, Monbaliu J-CM (2018). Eur J Org Chem:2301–2351
Porta R, Benaglia M, Puglisi A (2016). Org Process Res Dev 20:2–25
Poechlauer P, Colberg J, Fisher E, Jansen M, Johnson MD, Koenig SG, Lawler M, Laporte T, Manley J, Martin B, O’Kearney-McMullan A (2013). Org Process Res Dev 17:1472–1478
Nobuta T, Xiao G, Ghislieri D, Gilmore K, Seeberger PH (2015). Chem Commun 51:15133–15136
Bedore MW, Zaborenko N, Jensen KF, Jamison TF (2010). Org Process Res Dev 14:432–440
Vilotijevic I, Jamison TF (2007). Science 317:1189–1192
Bonollo S, Lanari D, Vaccaro L (2011). Eur J Org Chem:2587–2598
Morten CJ, Byers JA, Jamison TF (2011). J Am Chem Soc 133:1902–1908
Acknowledgments
We are grateful to Prof. Saverio Cellamare for the precious contribution in the technical support.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(PDF 2177 kb)
Rights and permissions
About this article
Cite this article
De Angelis, S., Celestini, P., Purgatorio, R. et al. Development of a continuous flow synthesis of propranolol: tackling a competitive side reaction. J Flow Chem 9, 231–236 (2019). https://doi.org/10.1007/s41981-019-00047-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41981-019-00047-8