Development of a continuous flow synthesis of propranolol: tackling a competitive side reaction

Abstract

This work reports the preparation of propranolol according to a flow process. Propranolol has been prepared paying attention to tackle the formation of the by-product tertiary amine, resulting from an additional ring opening of the starting epoxide. Remarkably, the use of catalytic amount of water resulted beneficial for the yield and purity of the desired propranolol, and to substantially reducing the amount of tertiary amine byproduct. The high concentration of the solutions allowed for a productivity of several grams/h.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7

References

  1. 1.

    “Propranolol hydrochloride”, Monograph, The American Society of Health-System Pharmacists, retrieved Jan 1, 2015

  2. 2.

    Kaiser C, Jen T, Garvey E, Bowen WD (1977). J Med Chem 20:687–689

    CAS  Article  Google Scholar 

  3. 3.

    Crowther AF, Smith LH (1968). J Med Chem 11:1009–1013

    CAS  Article  Google Scholar 

  4. 4.

    Cox MT, Jaggers SE, Jones G (1978). J Med Chem 21:182–188

    CAS  Article  Google Scholar 

  5. 5.

    Xuan F, Lin F, Jun L, Xuli W, Yong W (2015). CN104961642A

  6. 6.

    Prat D, Pardigon O, Flemming H-W, Letestu S, Ducandas V, Isnard P, Guntrum E, Senac T, Ruisseau S, Cruciani P, Hosek P (2013). Org Process Res Dev 17:1517–1525

    CAS  Article  Google Scholar 

  7. 7.

    Lizza JR, Moura-Letts G (2017). Synthesis 49:1231–1242

    CAS  Google Scholar 

  8. 8.

    Shivani BP, Asit KC (2007). J Org Chem 72:3713–3722

    CAS  Article  Google Scholar 

  9. 9.

    Tacon C, Guantai EM, Smith PJ, Chibale K (2012). Bioorg Med Chem 20:893–902

    CAS  Article  Google Scholar 

  10. 10.

    Zeng P, Liu D, Wu J, He L (2018). CN107556203

  11. 11.

    Prathap KJ, Wu Q, Olsson RT, Dinér P (2017). Org Lett 19:4746–4749

    CAS  Article  Google Scholar 

  12. 12.

    Jadhav GP, Kasture VS, Pawar SS, Vadgaonkar AR, Lodha AP, Tuse SK, Kajale HR, Borbane SA (2014). J Pharm Res 8:696–706

    CAS  Google Scholar 

  13. 13.

    Colella M, Carlucci C, Luisi R (2018). Top Curr Chem 376:46

    Article  Google Scholar 

  14. 14.

    De Angelis S, Carlucci C, de Candia M, Rebuzzini G, Celestini P, Riscazzi M, Luisi R, Degennaro L (2018). Catal Today 308:81–85

    Article  Google Scholar 

  15. 15.

    De Angelis S, De Renzo M, Carlucci C, Degennaro L, Luisi R (2016). Org Biomol Chem 14:4304–4311

    Article  Google Scholar 

  16. 16.

    Fanelli F, Parisi G, Degennaro L, Luisi R (2017). Beilstein J Org Chem 13:520–542

    CAS  Article  Google Scholar 

  17. 17.

    Morodo R, Gérardy R, Petita G, Monbaliu J-CM (2019). Green Chem. https://doi.org/10.1039/C9GC01819K

    CAS  Article  Google Scholar 

  18. 18.

    Russell MG, Jamison TF (2019). Angew Chem Int Ed 58:7678–7881

    CAS  Article  Google Scholar 

  19. 19.

    Cossar PJ, Baker JR, Cain N, McCluskey A (2018). R Soc Open Sci 5:171190

    Article  Google Scholar 

  20. 20.

    Gérardy R, Emmanuel N, Toupy T, Kassin V-E, Tshibalonza NN, Schmitz M, Monbaliu J-CM (2018). Eur J Org Chem:2301–2351

  21. 21.

    Porta R, Benaglia M, Puglisi A (2016). Org Process Res Dev 20:2–25

    CAS  Article  Google Scholar 

  22. 22.

    Poechlauer P, Colberg J, Fisher E, Jansen M, Johnson MD, Koenig SG, Lawler M, Laporte T, Manley J, Martin B, O’Kearney-McMullan A (2013). Org Process Res Dev 17:1472–1478

    CAS  Article  Google Scholar 

  23. 23.

    Nobuta T, Xiao G, Ghislieri D, Gilmore K, Seeberger PH (2015). Chem Commun 51:15133–15136

    CAS  Article  Google Scholar 

  24. 24.

    Bedore MW, Zaborenko N, Jensen KF, Jamison TF (2010). Org Process Res Dev 14:432–440

    CAS  Article  Google Scholar 

  25. 25.

    Vilotijevic I, Jamison TF (2007). Science 317:1189–1192

    CAS  Article  Google Scholar 

  26. 26.

    Bonollo S, Lanari D, Vaccaro L (2011). Eur J Org Chem:2587–2598

  27. 27.

    Morten CJ, Byers JA, Jamison TF (2011). J Am Chem Soc 133:1902–1908

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Saverio Cellamare for the precious contribution in the technical support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gabriele Rebuzzini or Renzo Luisi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2177 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Angelis, S., Celestini, P., Purgatorio, R. et al. Development of a continuous flow synthesis of propranolol: tackling a competitive side reaction. J Flow Chem 9, 231–236 (2019). https://doi.org/10.1007/s41981-019-00047-8

Download citation

Keywords

  • Propranolol
  • Tertiary amines
  • Ring opening
  • Flow chemistry
  • HPLC