Skip to main content
Log in

Metallorganic reactions in the polytropic microreactors

  • Review
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

High exothermicity, unstable intermediates, high reaction rates are the features that make metallorganic reactions very challenging, especially in commercial operation. No wonder that there is a large interest for the alternative production technology. This paper reviews a research program by Bayer on metallorganic reactions in microreactors. Selected aspects of use of micro-reaction technology for this reaction class are discussed. Two operational issues, i.e. temperature control and clogging are highlighted. Furthermore, the design concept of a MRT based commercial unit and its economics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wolf A, Michele V, Schlüter OF-K, Herbstritt F, Heck J, Mleczko L (2015). Chem Eng Technol 38(11):2017–2024

    Article  CAS  Google Scholar 

  2. Fu M, Luan W, Tu S-T, Mleczko L (2015) J Nanomater 842365/1–842365/9

  3. Lu H, Hoheisel W, Mleczko L, Nowak S Continuous synthesis of high quantum yield InP/ZnS nanocrystals. (2014) EP2785897A1, Oct.

  4. Henig M (2011) Process, 2011. http://www.process-worldwide.com. Accessed 10/20/2010

  5. Buchholz S, Mleczko L (2008). VDI-Ber 2039:177–181

    CAS  Google Scholar 

  6. Ji G, Ding C, Zhang G, Ji S, Ji G, Ji X, Yang H (2014) Method utilizing micro-channel to prepare tris(2-chloroethyl)phosphite. CN104119374A, Oct

  7. Mleczko L, Zhao D (2015) Technology for Continuous Production of Fine Chemicals, A Case Study for Low Temperature Lithiation Reactions. In: Managing Hazardous Reactions and Compounds in Process Chemistry; Pesti, J. A., Abdel-Magid, A. F. (Eds). American Chemical Society: Washington, DC

  8. Tian S, Fu M, Hoheisel W, Mleczko L (2016). Chem Eng J 289:365–373

    Article  CAS  Google Scholar 

  9. Thaisrivongs DA, Naber JR, McMullen JP (2016). Org Process Res Dev 20:1997–2004

    Article  CAS  Google Scholar 

  10. Murray PRD, Browne DL, Pastre JC, Butters C, Guthrie D, Ley SV (2013). Org Process Res Dev 17:1192–1108

    Article  CAS  Google Scholar 

  11. Yoshida J (2009) Flash Chemistry: Fast Organic Synthesis in Microsystems. Wiley:New York,

  12. Kim H, Min K-I, Inoue K, Im DJ, Kim D-P, Yoshida J-i (2016). Science 352:691–694

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida J-i, Takahashi Y, Nagaki A (2013). Chem Commun 49:9896–9904

    Article  CAS  Google Scholar 

  14. Nagaki A, Ichinari D, Yoshida J-i (2014). J Am Chem Soc 136(35):12245–12448

    Article  CAS  PubMed  Google Scholar 

  15. Hafner A, Meisenbach M, Sedelmeier J (2016). Org Lett 18(15):3630–3633

    Article  CAS  PubMed  Google Scholar 

  16. Hafner A, Filipponi P, Piccioni L, Meisenbach M, Schenkel B, Venturoni F, Sedelmeier J (2016). Org Process Res Dev 20:1833–1837

    Article  CAS  Google Scholar 

  17. Laue S, Haverkamp V, Mleczko L (2016). Org Process Res Dev 20:480–486

    Article  CAS  Google Scholar 

  18. Xie D, Zhou J, Tian S, Mleczko L, Zhou X (2016). Chem Eng Technol 39(8):1451–1456

    Article  CAS  Google Scholar 

  19. Laue S, Haverkamp V, Frye M, Michele V, Mleczko L (2007) Process for continuously preparing difluorobenzene derivatives with long operating times. WO2007054213A1, May

  20. Liu T, Yu F (2010) Continuous reacting device and method for strong exothermic reaction. CN101757881A, June

  21. Westermann T, Mleczko L (2016). Org Process Res Dev 20(2):487–494

    Article  CAS  Google Scholar 

  22. Harrington PJ (2011) Pharmaceutical process chemistry for synthesis: rethinking the routes to scale-up. Wiley: New York, pp 304–305

  23. Oppenheimer J Methods of isolating 4-chloro-2-fluoro-3-substituted-phenylboronic acids. (2014) US8822730B2, Sep

  24. Hessel V, Kralisch D, Kockmann N (2015) Novel process windows. Wiley-VCH, Weinheim

    Google Scholar 

  25. Nogaki A, Yoshida J-I (2014) In: Luisi R, Capriati V (eds) Lithium compounds in organic synthesis: from fundamentals to applications. Wiley-VCH, Weinheim

    Google Scholar 

  26. Hunter SM, Susanne F, Whitten R, Hartwig T, Schilling M (2018). Tetrahedron 74:3176–3182

    Article  CAS  Google Scholar 

  27. Haber J, Jiang B, Maeder T, Borhani N, Thome J, Renken A, Kiwi-Minskera L (2014). Chem Eng Process Process Intensif 84:14–23

    Article  CAS  Google Scholar 

  28. Hartman RL (2012). Org Process Res Dev 16(5):870–887

    Article  CAS  Google Scholar 

  29. Flowers BS, Hartman RL (2012). Challenges 3(2):194–211

    Article  Google Scholar 

  30. Hartman RL, Naber JR, Zaborenko N (2010). Org Process Res Dev 14(6):1347–1357

    Article  CAS  Google Scholar 

  31. Stubblefield CB, Bach RO (1972). J Chem Eng Data 17(4):491–492

    Article  CAS  Google Scholar 

  32. Wynn DA, Roth MM, Pollard BD (1984). Talanta 31(11):1036–1040

    Article  CAS  PubMed  Google Scholar 

  33. Jennifer J (2010) PhD thesis, Universite Francois-Rabelais de Tours

  34. Jensen KF (2017). AICHE J 63(3):858–869

    Article  CAS  Google Scholar 

  35. Poechlauer P, Colberg J, Fisher E, Jansen M, Johnson MD, Koenig SG, Lawler M, Laporte T, Manley J, Martin B, O’Kearney-McMullan A (2013). Org Process Res Dev 17:1472–1478

    Article  CAS  Google Scholar 

  36. Roberge DM, Ducry L, Bieler N, Cretton P, Zimmermann B (2005). Chem Eng Technol 28(3):318–323

    Article  CAS  Google Scholar 

  37. Roberge DM, Zimmermann B, Rainone F, Gottsponer M, Eyholzer M, Kockmann N (2008). Org Process Res Dev 12:905–910

    Article  CAS  Google Scholar 

  38. Krtschila U, Hessel V, Kralischd D, Kreiseld G, Küpperb M, Schenkb R (2006). Chimia 60:611–617

    Article  CAS  Google Scholar 

Download references

Acknowledgments

In this paper we summarized results obtained over the long time by a large team of colleagues. We can’t name them all but we would like to thank explicitly Dres S. Peper who analyzed the solubility of Li-salts, T. Westermann who studied temperature control and Shizhe Tian who dealt with economic evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslaw Mleczko.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, M., Mleczko, L. Metallorganic reactions in the polytropic microreactors. J Flow Chem 9, 89–100 (2019). https://doi.org/10.1007/s41981-019-00030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00030-3

Keywords

Navigation