Skip to main content
Log in

Continuous flow palladium-catalyzed trifluoromethylthiolation of C-H bonds

  • Communications
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

A continuous flow process for the synthesis of trifluoromethylthioethers is reported. The palladium-catalyzed C-H trifluoromethylthiolation of amides derived from the 8-aminoquinoline using N-[(trifluoromethyl)thio]phthalimide produced the desired products in moderate to good yields with a residence time of 20 min. In comparison with the batch process, the reaction time was decreased by a factor of 100 to 200, demonstrating the positive effect of continuous flow processes for this type of reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1

References

  1. Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N (1993). Nature (London) 366:529–531

    Article  CAS  Google Scholar 

  2. Corbet M, De Campo F (2013). Angew Chem Int Ed 52:9896–9898

    Article  CAS  Google Scholar 

  3. Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M (2018). Chem. Soc. Rev 47:6603–6743 and references therein

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rao W-H, Shi B-F (2016). Org Chem Front 3:1028–1047

    Article  CAS  Google Scholar 

  5. Yang X, Shan G, Wang L, Rao Y (2016). Tetrahedron Lett. 57:819–836

    Article  CAS  Google Scholar 

  6. Petrone DA, Ye J, Lautens M (2016). Chem. Rev. 116:8003–8104

    Article  CAS  PubMed  Google Scholar 

  7. Meanwell NA (2018). J. Med. Chem. 61:5822–5880

    Article  CAS  PubMed  Google Scholar 

  8. Wang J et al (2014). Chem. Rev. 114:2432–2506

    Article  CAS  PubMed  Google Scholar 

  9. Toulgoat F, Alazet S, Billard T (2014). Eur J Org Chem:2415–2428 and references therein

  10. Xu X-H, Matsuzaki K, Shibata N (2015). Chem. Rev. 115:731–764 and references therein

    Article  CAS  PubMed  Google Scholar 

  11. Barata-Vallejo S, Bonesi S, Postigo A (2016). Org Biomol Chem 14:7150–7182

    Article  CAS  PubMed  Google Scholar 

  12. Chachignon H, Cahard D (2016). Chin. J. Chem. 34:445–454

    Article  CAS  Google Scholar 

  13. Hansch C, Leo A, Taft RW (1991). Chem. Rev. 91:165–195

    Article  CAS  Google Scholar 

  14. Shao X, Xu C, Lu L, Shen Q (2015). Acc. Chem. Res. 48:1227–1236

    Article  CAS  PubMed  Google Scholar 

  15. Xu C, Shen Q (2014). Org. Lett. 16:2046–2049

    Article  CAS  PubMed  Google Scholar 

  16. Yin W, Wang Z, Huang Y (2014). Adv. Synth. Catal. 356:2998–3006

    Article  CAS  Google Scholar 

  17. Yoshida M, Kawai K, Tanaka R, Yoshino T, Matsunaga S (2017). Chem. Commun. 53:5974–5977

    Article  CAS  Google Scholar 

  18. Zhao Q, Poisson T, Pannecoucke X, Bouillon JP, Besset T (2017). Org. Lett. 19:5106–5109

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Q, Chen MY, Poisson T, Pannecoucke X, Bouillon JP, Besset T (2018). Eur J Org Chem. https://doi.org/10.1002/ejoc.201801071

  20. Kesavan A, Chaitanya M, Anbarasan P (2018). Eur. J. Org. Chem.:3276–3279

  21. Chen C, Xu X-H, Yang B, Qing F-L (2014). Org. Lett. 16:3372–3375

    Article  CAS  PubMed  Google Scholar 

  22. Guo S, Zhang X, Tang P (2015). Angew. Chem. Int. Ed. 54:4065–4069

    Article  CAS  Google Scholar 

  23. Wu H, Xiao Z, Wu J, Guo Y, Xiao J-C, Liu C, Chen Q-Y (2015). Angew. Chem. Int. Ed. 54:4070–4074

    Article  CAS  Google Scholar 

  24. Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F (2016). J. Am. Chem. Soc. 138:16200–16203

    Article  CAS  PubMed  Google Scholar 

  25. Xiong H-Y, Besset T, Cahard D, Pannecoucke X (2015). J Org Chem 80:4204–4212

    Article  CAS  PubMed  Google Scholar 

  26. Newman SG, Jensen KF (2013). Green Chem. 15:1456–1472

    Article  CAS  Google Scholar 

  27. Gutmann B, Kappe CO (2017). J Flow Chem 7:65–71

    Article  CAS  Google Scholar 

  28. Wirth T (2017). Angew Chem Int Ed 56:682–684

    Article  CAS  Google Scholar 

  29. Morse PD, Beingessner RL, Jamison TF (2017). Isr J Chem 57:218–227

    Article  CAS  Google Scholar 

  30. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017). Chem. Rev. 117:11796–11893 and references therein

    Article  CAS  PubMed  Google Scholar 

  31. Sullivan J. Newman S (2108) in flow chemistry for the synthesis of heterocycles. K. Sharma & E. Van der Eycken, Eds. Springer. https://doi.org/10.1007/7081_2018_18

Download references

Acknowledgments

This research was supported by the Natural Science and Engineering Research Council of Canada (NSERC) under the CREATE Training Program in Continuous Flow Science, a discovery grant from NSERC (Canada), the Canada Foundation for Innovation, the Université de Montréal and the Centre in Green Chemistry and Catalysis (CGCC). We would like to thank Alexandra Furtos from the Regional Mass Spectrometry Centre and Sylvie Bilodeau from the Regional Centre of NMR spectroscopy of the Université de Montréal. H.-Y.X. thanks CSC for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatiana Besset or Hélène Lebel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 2.13 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchard, A., Kairouz, V., Manneveau, M. et al. Continuous flow palladium-catalyzed trifluoromethylthiolation of C-H bonds. J Flow Chem 9, 9–12 (2019). https://doi.org/10.1007/s41981-018-0023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-018-0023-4

Keywords

Navigation