Journal of Flow Chemistry

, Volume 9, Issue 1, pp 9–12 | Cite as

Continuous flow palladium-catalyzed trifluoromethylthiolation of C-H bonds

  • Alexanne Bouchard
  • Vanessa Kairouz
  • Maxime Manneveau
  • Heng-Ying Xiong
  • Tatiana BessetEmail author
  • Xavier Pannecoucke
  • Hélène LebelEmail author


A continuous flow process for the synthesis of trifluoromethylthioethers is reported. The palladium-catalyzed C-H trifluoromethylthiolation of amides derived from the 8-aminoquinoline using N-[(trifluoromethyl)thio]phthalimide produced the desired products in moderate to good yields with a residence time of 20 min. In comparison with the batch process, the reaction time was decreased by a factor of 100 to 200, demonstrating the positive effect of continuous flow processes for this type of reaction.


Aminoquinoline Bidentate directing group C-SCF3 bond Organofluorine compounds Flow process C-H activation Halogenation Trifluoromethylthioethers 



This research was supported by the Natural Science and Engineering Research Council of Canada (NSERC) under the CREATE Training Program in Continuous Flow Science, a discovery grant from NSERC (Canada), the Canada Foundation for Innovation, the Université de Montréal and the Centre in Green Chemistry and Catalysis (CGCC). We would like to thank Alexandra Furtos from the Regional Mass Spectrometry Centre and Sylvie Bilodeau from the Regional Centre of NMR spectroscopy of the Université de Montréal. H.-Y.X. thanks CSC for fellowship.

Supplementary material

41981_2018_23_MOESM1_ESM.pdf (2.1 mb)
(PDF 2.13 mb)


  1. 1.
    Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N (1993). Nature (London) 366:529–531CrossRefGoogle Scholar
  2. 2.
    Corbet M, De Campo F (2013). Angew Chem Int Ed 52:9896–9898CrossRefGoogle Scholar
  3. 3.
    Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M (2018). Chem. Soc. Rev 47:6603–6743 and references thereinCrossRefGoogle Scholar
  4. 4.
    Rao W-H, Shi B-F (2016). Org Chem Front 3:1028–1047CrossRefGoogle Scholar
  5. 5.
    Yang X, Shan G, Wang L, Rao Y (2016). Tetrahedron Lett. 57:819–836CrossRefGoogle Scholar
  6. 6.
    Petrone DA, Ye J, Lautens M (2016). Chem. Rev. 116:8003–8104CrossRefGoogle Scholar
  7. 7.
    Meanwell NA (2018). J. Med. Chem. 61:5822–5880CrossRefGoogle Scholar
  8. 8.
    Wang J et al (2014). Chem. Rev. 114:2432–2506CrossRefGoogle Scholar
  9. 9.
    Toulgoat F, Alazet S, Billard T (2014). Eur J Org Chem:2415–2428 and references thereinGoogle Scholar
  10. 10.
    Xu X-H, Matsuzaki K, Shibata N (2015). Chem. Rev. 115:731–764 and references thereinCrossRefGoogle Scholar
  11. 11.
    Barata-Vallejo S, Bonesi S, Postigo A (2016). Org Biomol Chem 14:7150–7182CrossRefGoogle Scholar
  12. 12.
    Chachignon H, Cahard D (2016). Chin. J. Chem. 34:445–454CrossRefGoogle Scholar
  13. 13.
    Hansch C, Leo A, Taft RW (1991). Chem. Rev. 91:165–195CrossRefGoogle Scholar
  14. 14.
    Shao X, Xu C, Lu L, Shen Q (2015). Acc. Chem. Res. 48:1227–1236CrossRefGoogle Scholar
  15. 15.
    Xu C, Shen Q (2014). Org. Lett. 16:2046–2049CrossRefGoogle Scholar
  16. 16.
    Yin W, Wang Z, Huang Y (2014). Adv. Synth. Catal. 356:2998–3006CrossRefGoogle Scholar
  17. 17.
    Yoshida M, Kawai K, Tanaka R, Yoshino T, Matsunaga S (2017). Chem. Commun. 53:5974–5977CrossRefGoogle Scholar
  18. 18.
    Zhao Q, Poisson T, Pannecoucke X, Bouillon JP, Besset T (2017). Org. Lett. 19:5106–5109CrossRefGoogle Scholar
  19. 19.
    Zhao Q, Chen MY, Poisson T, Pannecoucke X, Bouillon JP, Besset T (2018). Eur J Org Chem.
  20. 20.
    Kesavan A, Chaitanya M, Anbarasan P (2018). Eur. J. Org. Chem.:3276–3279Google Scholar
  21. 21.
    Chen C, Xu X-H, Yang B, Qing F-L (2014). Org. Lett. 16:3372–3375CrossRefGoogle Scholar
  22. 22.
    Guo S, Zhang X, Tang P (2015). Angew. Chem. Int. Ed. 54:4065–4069CrossRefGoogle Scholar
  23. 23.
    Wu H, Xiao Z, Wu J, Guo Y, Xiao J-C, Liu C, Chen Q-Y (2015). Angew. Chem. Int. Ed. 54:4070–4074CrossRefGoogle Scholar
  24. 24.
    Mukherjee S, Maji B, Tlahuext-Aca A, Glorius F (2016). J. Am. Chem. Soc. 138:16200–16203CrossRefGoogle Scholar
  25. 25.
    Xiong H-Y, Besset T, Cahard D, Pannecoucke X (2015). J Org Chem 80:4204–4212CrossRefGoogle Scholar
  26. 26.
    Newman SG, Jensen KF (2013). Green Chem. 15:1456–1472CrossRefGoogle Scholar
  27. 27.
    Gutmann B, Kappe CO (2017). J Flow Chem 7:65–71CrossRefGoogle Scholar
  28. 28.
    Wirth T (2017). Angew Chem Int Ed 56:682–684CrossRefGoogle Scholar
  29. 29.
    Morse PD, Beingessner RL, Jamison TF (2017). Isr J Chem 57:218–227CrossRefGoogle Scholar
  30. 30.
    Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017). Chem. Rev. 117:11796–11893 and references thereinCrossRefGoogle Scholar
  31. 31.
    Sullivan J. Newman S (2108) in flow chemistry for the synthesis of heterocycles. K. Sharma & E. Van der Eycken, Eds. Springer.

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Continuous Flow Synthesis LaboratoryUniversité de MontréalMontréalCanada
  2. 2.INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014)Normandie UniversitéRouenFrance

Personalised recommendations