Journal of Flow Chemistry

, Volume 9, Issue 1, pp 19–25 | Cite as

Enantiospecific cyclization of methyl N-(tert-butoxycarbonyl)-N-(3-chloropropyl)-D-alaninate to 2-methylproline derivative via ‘memory of chirality’ in flow

  • Gianvito ViléEmail author
  • Gunther Schmidt
  • Sylvia Richard-Bildstein
  • Stefan Abele


We report for the very first time a continuous-flow route to perform the intramolecular cyclization of haloalkyl-substituted α-amino esters via memory of chirality (MoC), using lithium bis(trimethylsilyl)amine as a base and methyl N-(tert-butoxycarbonyl)-N-(3-chloropropyl)-D-alaninate as a model reactant. The various reaction parameters, such as temperature, residence time, reactant stoichiometry, or type and concentration of the base were optimized to maximize the yield of the cyclized product and its enantiomeric excess. At the conditions identified, the reaction was eventually scaled up, reaching a productivity of 11 g h−1. Compared to the standard batch protocols available in the literature, the use of a microreactor enables a better control of the exothermicity associated with the addition of the organolithium reagent to the reaction mixture, resulting in operations at more practical temperatures, with high enantiospecificity and full conversion of the reactive amino ester within a few seconds of residence time.

Graphical abstract


Flow chemistry Asymmetric synthesis Cyclization Microreactors Memory of chirality 



flow rate in mL min−1 of compound 16 in a solution of DMF


flow rate in mL min−1 of the base solution


reaction temperature




liquid chromatography


gas chromatography


mass spectrometry


nuclear magnetic resonance


conversion of 16


enantiomeric excess



We are grateful to Dr. Simone Tortoioli for proof-reading the manuscript and for valuable comments. The authors would like to thank Julien Grimont for NMR support, as well as Claus Mueller and his team for analytical methods and chiral analyses. Finally, Dr. Thomas Weller is sincerely acknowledged for support and comments on the paper.

Supplementary material

41981_2018_22_MOESM1_ESM.docx (408 kb)
ESM 1 (DOCX 407 kb)


  1. 1.
    Park K-H, Kurth MJ (2002). Tetrahedron 58:8629CrossRefGoogle Scholar
  2. 2.
    Kano T, Sakamoto R, Mii H, Wang Y-G, Maruoka K (2010). Tetrahedron 66:4900CrossRefGoogle Scholar
  3. 3.
    Kawabata T, Yahiro K, Fuji K (1991). J. Am. Chem. Soc. 113:9694CrossRefGoogle Scholar
  4. 4.
    Zhao H, Hsu DC, Carlier PR (2005). Synthesis 1:1Google Scholar
  5. 5.
    Seebach D, Naef R (1981). Helv. Chim. Acta 64:2704CrossRefGoogle Scholar
  6. 6.
    Seebach D, Sting AR, Hoffmann M (1996). Angew. Chem. Int. Ed. 35:2708CrossRefGoogle Scholar
  7. 7.
    Branca M, Gori D, Guillot R, Alezra V, Kouklovsky C (2008). J. Am. Chem. Soc. 130:5864CrossRefPubMedGoogle Scholar
  8. 8.
    Schmalz H-G, de Konig CB, Bernicke D, Siegel S, Pfletschinger A (1999). Angew. Chem. Int. Ed. 38:1620CrossRefGoogle Scholar
  9. 9.
    Buckmelter AJ, Kim AI, Rychnovsky SD (2000). J. Am. Chem. Soc. 122:9386CrossRefGoogle Scholar
  10. 10.
    Giese B, Wettsein P, Stähelin C, Barbosa F, Neuburger M, Zenher M, Wessig P (1999). Angew. Chem. Int. Ed. 38:2586CrossRefGoogle Scholar
  11. 11.
    Kolaczkowski L, Barnes DM (2007). Org. Lett. 9:3029CrossRefPubMedGoogle Scholar
  12. 12.
    Hicks F, Hou Y, Langston M, McCarron A, O’Brien E, Ito T, Ma C, Matthews C, O’Bryan C, Provencal D, Zhao Y, Huang J, Yang Q, Heyang L, Johnson M, Sitang Y, Yuqiang L (2013). Org. Process. Res. Dev. 17:829CrossRefGoogle Scholar
  13. 13.
    Macharia J, Wambua V, Hong Y, Harris L, Hirschi JS, Evans GB, Vetticatt MJ (2017). Angew. Chem. Int. Ed. 56:8756CrossRefGoogle Scholar
  14. 14.
    Salmon AG, Kizer KW, Zeise L, Jackson RJ, Smith MT (1995). J. Toxicol. Clin. Toxicol. 33:115CrossRefPubMedGoogle Scholar
  15. 15.
    Wu G, Huang M (2014). Org. Process. Res. Dev. 18:1192CrossRefGoogle Scholar
  16. 16.
    Kawabata T, Kawakami S, Majumdar S (2003). J. Am. Chem. Soc. 125:13012CrossRefPubMedGoogle Scholar
  17. 17.
    Kawabata T, Wirth T, Yahiro K, Suzuki H, Fuji K (1994). J. Am. Chem. Soc. 116:10809CrossRefGoogle Scholar
  18. 18.
    Kawabata T, Matsuda S, Kawakami S, Monguchi D, Moriyama K (2006). J. Am. Chem. Soc. 128:15394CrossRefPubMedGoogle Scholar
  19. 19.
    Kawabata T, Moriyama K, Kawakami S, Tsubaki K (2008). J. Am. Chem. Soc. 130:4153CrossRefPubMedGoogle Scholar
  20. 20.
    Pastre JC, Browne DL, Ley SV (2013). Chem. Soc. Rev. 42:8849CrossRefPubMedGoogle Scholar
  21. 21.
    Baumann M, Baxendale IR, Beilstein J (2015). Org. Chem. 11:1194Google Scholar
  22. 22.
    Vilé G, Richard-Bildstein S, Lhuillery A, Rueedi G (2018). ChemCatChem 10:3786–3794Google Scholar
  23. 23.
    Abele S, Höck S, Schmidt G, Funel J-A, Marti R (2012). Org. Process. Res. Dev. 16:1114CrossRefGoogle Scholar
  24. 24.
    Amann F, Frank M, Rhodes M, Robinson A, Kesselgruber M, Abele S (2016). Org. Process. Res. Dev. 20:446CrossRefGoogle Scholar
  25. 25.
    Kockmann N, Thenée P, Fleischer-Trebes C, Laudadio G, Noël T (2017). React. Chem. Eng. 2:258CrossRefGoogle Scholar
  26. 26.
    Glasnov TN, Kappe CO (2011). Chem. Eur. J. 17:11956CrossRefPubMedGoogle Scholar
  27. 27.
    Yoshida J, Takahashia Y, Nagaki A (2013). Chem. Commun. 49:9896CrossRefGoogle Scholar
  28. 28.
    Yoshida J, Kim H, Nagaki A (2017). J. Flow. Chem. 7:60CrossRefGoogle Scholar
  29. 29.
    For general methods to prepare 16, see: (i) Kachkovskyi G, Faderl C, Reiser O (2013). Adv. Synth. Catal. 355:2240; (ii) Anxionnat B, Robert B, George P, Ricci G, Perrin MA (2012). J. Org. Chem. 77:6087Google Scholar
  30. 30.
    The chiral analysis of 16 was performed by analyzing the starting material using the method reported in the Supporting Information, and comparing this with a racemic mixture containing both 16 and ent -16 Google Scholar
  31. 31.
    Sapse AM, von Ragué Schleyer P (1995) Lithium Chemistry – a Theoretical and Experimental Overview. Wiley, New York, p 145Google Scholar
  32. 32.
    Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q (2013). ChemSusChem 6:746CrossRefPubMedGoogle Scholar
  33. 33.
    Wegner J, Ceylan S, Kirschning A (2012). Adv. Synth. Catal. 354:17CrossRefGoogle Scholar
  34. 34.
    Fogler, H. Elements of chemical reaction engineering 1992, 2nd edition. Prentice Hall, Upper Saddle RiverGoogle Scholar
  35. 35.
    Singh R, Panda G (2013). RSC Adv. 3:19533CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  1. 1.Drug Discovery Chemistry, Idorsia Pharmaceuticals Ltd.AllschwilSwitzerland
  2. 2.Chemical Development, Idorsia Pharmaceuticals Ltd.AllschwilSwitzerland

Personalised recommendations