Skip to main content

Advertisement

Log in

A flow split test to discriminating between heterogeneous and homogeneous contributions in Suzuki coupling

  • Communications
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

The homogeneous vs heterogeneous contributions when using solid catalysts for the Suzuki-Miyaura coupling is still disputed. Leaching is often observed and quantified albeit with unclear conclusions about contributions of the leached species and of the solid catalyst to the global catalytic activity. In this work, a new flow reactor design to discriminate both contributions is proposed. With the help of a simple reactor model, it has been possible to conclude that the coupling of 4-iodoacetophenone with phenylboronic acid proceeded with the leached homogeneous species only, whatever the solid Pd/silica used, whereas chloro-derivatives behaves differently. This reactor is simple to build and could be of general use to reveal actual heterogeneous vs homogeneous catalysis for many reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Widegren JA, Finke RG (2003) J Mol Catal 191:187

    Article  CAS  Google Scholar 

  2. Phan NTS, Van Der Sluys M, Jones CW (2006) Adv Synth Catal 348(6):609

    Article  CAS  Google Scholar 

  3. Reay AJ, Fairlamb IJS (2015) Chem Commun 51(91):16289

    Article  CAS  Google Scholar 

  4. Zotto AD, Zuccaccia D (2017) Catal Sci Technol 7(18):3934

    Article  Google Scholar 

  5. Cantillo D, Kappe CO (2014) ChemCatChem 6(12):3286

    Article  CAS  Google Scholar 

  6. Len C, Bruniaux S, Delbecq F, Parmar VS (2017) Catalysts 7(5):146

    Article  Google Scholar 

  7. Lim J, Seong Lee S, Ying JY (2010) Chem Commun 46(5):806

    Article  CAS  Google Scholar 

  8. Cheong JL, Wong D, Lee S, Lim J, Lee SS (2015) Chem Commun 51:1042

    Article  CAS  Google Scholar 

  9. Kluwer AM, Simons C, Knijnenburg Q, van der Vlugt JI, de Bruin B, Reek JNH (2013) Dalton Trans 42(10):3609

    Article  CAS  Google Scholar 

  10. Schmidt AF, Kurokhtina AA (2012) Kinet Catal 53(6):714

    Article  CAS  Google Scholar 

  11. Soomro SS, Ansari FL, Chatziapostolou K, Köhler K (2010) J Catal 273(2):138

    Article  CAS  Google Scholar 

  12. Broadwater SJ, McQuade DT (2006) J Org Chem 71(5):2131

    Article  CAS  Google Scholar 

  13. Lee JY, Tzeng RJ, Wang MC, Lee HM (2017) Inorg Chim Acta 464:74

    Article  CAS  Google Scholar 

  14. Gaikwad AV, Holuigue A, Thathagar MB, ten Elshof JE, Rothenberg G (2007) Chem –Eur J 13 (24):6908

    Article  CAS  Google Scholar 

  15. Ellis PJ, Fairlamb IJS, Hackett SFJ, Wilson K, Lee AF (2010) Angew Chem Int Ed 49(10):1820

    Article  CAS  Google Scholar 

  16. Davis JJ, Hanyu Y (2010) Nanotechnology 21(26):265302

    Article  Google Scholar 

  17. Pérez-Lorenzo M (2012) J Phys Chem Lett 3(2):167

    Article  Google Scholar 

  18. Barreiro EM, Hao Z, Adrio LA, van Ommen JR, Hellgardt K, Hii KKM (2018) Catal Today 308:64

    Article  CAS  Google Scholar 

  19. Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New York

    Google Scholar 

  20. de Bellefon C (2014) Catalytic engineering aspects of flow chemistry. In: Darvas F, Dormán G, Hessel V (eds) Flow chemistry vol 2: applications. Walter De Gruyter GmbH, Berlin, pp 31–61

  21. Schneider N, Lowe DM, Sayle RA, Tarselli MA, Landrum GA (2016) J Med Chem 59(9):4385

    Article  CAS  Google Scholar 

  22. Baleizão C, Corma A, García H, Leyva A (2003) Chem Commun 0(5):606

    Article  Google Scholar 

  23. Artok L, Bulut H (2004) Tetrahedron Lett 45(20):3881

    Article  CAS  Google Scholar 

  24. Yuan B, Pan Y, Li Y, Yin B, Jiang H (2010) Angew Chem Int Ed 49(24):4054

    Article  CAS  Google Scholar 

  25. Islam SM, Mondal P, Roy AS, Mondal S, Hossain D (2010) Tetrahedron Lett 51(15):2067

    Article  CAS  Google Scholar 

  26. Siga F, Temel H, Aydemir M, Ocak YS, Pasa S, Baysal A (2012) Appl Catal A 449:172

    Article  CAS  Google Scholar 

  27. Yamada YMA, Sarkar SM, Uozumi Y (2012) J Am Chem Soc 134(6):3190

    Article  CAS  Google Scholar 

  28. Corma A, Das D, García H, Leyva A (2005) J Catal 229(2):322

    Article  CAS  Google Scholar 

  29. Tran TPN, Thakur A, Trinh DX, Dao ATN, Taniike T (2018) Appl Catal A 549(Supplement C):60

    Article  CAS  Google Scholar 

  30. Pandarus V, Desplantier-Giscard D, Gingras G, Ciriminna R, Demma Carà P, Béland F, Pagliaro M (2013) Tetrahedron Lett 54(35):4712

    Article  CAS  Google Scholar 

  31. Pagliaro M, Pandarus V, Beland F, Ciriminna R, Palmisano G, Cara PD (2011) Catal Sci Technol 1:736

    Article  Google Scholar 

  32. Arvela RK, Leadbeater NE, Sangi MS, Williams VA, Granados P, Singer RD (2005) J Org Chem 70(1):161

    Article  CAS  Google Scholar 

  33. Handa S, Smith JD, Hageman MS, Gonzalez M, Lipshutz BH (2016) ACS Catal 6(12):8179

    Article  CAS  Google Scholar 

  34. Pandarus V, Gingras G, Béland F, Ciriminna R, Pagliaro M (2012) Org Process Res Dev 16 (1):117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ED Chimie de Lyon is gratefully acknowledged for funding the PhD thesis of A. Bourouina. CNRS, CPE Lyon and UCBL are also thanked for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valérie Meille or Claude de Bellefon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 639 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourouina, A., Meille, V. & de Bellefon, C. A flow split test to discriminating between heterogeneous and homogeneous contributions in Suzuki coupling. J Flow Chem 8, 117–121 (2018). https://doi.org/10.1007/s41981-018-0020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-018-0020-7

Keywords

Navigation