Reductive aminations using a 3D printed supported metal(0) catalyst system

Abstract

Additively manufactured catalytic static mixers were used for the intensified reductive amination of aldehydes and ketones inside a continuous flow reactor. This efficient synthesis method is enabled by the use of tubular reactors fitted with 3D printed metal static mixers which are coated with a catalytically active layer, either Pd or Ni. The 3D printing process allows for maximum design flexibility for the mixer scaffold and is compatible with a range of deposition methods including electroplating and metal cold spraying. Single- and multi-stage continuous flow processing yielded high to full conversion and has the potential to scale-up these operations without the need for manual handling of reactive imine intermediates.

The continuous flow reductive amination was performed in a tubular hydrogenation reactor, using nickel or palladium containing catalytic static mixers

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Boyd GV (1996) Advances in the chemistry of amino and nitro compounds. In: Patai S (ed) The chemistry of amino, Nitroso, nitro and related groups. Wiley, Hokoben, p 533–626

    Google Scholar 

  2. 2.

    McGonagle FI, MacMillan DS, Murray J et al (2013) Development of a solvent selection guide for aldehyde-based direct reductive amination processes. Green Chem 15:1159–1165. https://doi.org/10.1039/C3GC40359A

    Article  CAS  Google Scholar 

  3. 3.

    Reddy PS, Kanjilal S, Sunitha S, Prasad RBN (2007) Reductive amination of carbonyl compounds using NaBH4 in a Brønsted acidic ionic liquid. Tetrahedron Lett 48:8807–8810. https://doi.org/10.1016/j.tetlet.2007.10.094

    Article  CAS  Google Scholar 

  4. 4.

    Kato H, Shibata I, Yasaka Y et al (2006) The reductive amination of aldehydes and ketones by catalytic use of dibutylchlorotin hydride complex. Chem Commun :4189–4191. https://doi.org/10.1039/B610614E

  5. 5.

    Itoh T, Nagata K, Miyazaki M et al (2004) A selective reductive amination of aldehydes by the use of Hantzsch dihydropyridines as reductant. Tetrahedron 60:6649–6655. https://doi.org/10.1016/j.tet.2004.05.096

    Article  CAS  Google Scholar 

  6. 6.

    Sato S, Sakamoto T, Miyazawa E, Kikugawa Y (2004) One-pot reductive amination of aldehydes and ketones with α-picoline-borane in methanol, in water, and in neat conditions. Tetrahedron 60:7899–7906. https://doi.org/10.1016/j.tet.2004.06.045

    Article  CAS  Google Scholar 

  7. 7.

    Cho BT, Kang SK (2005) Direct and indirect reductive amination of aldehydes and ketones with solid acid-activated sodium borohydride under solvent-free conditions. Tetrahedron 61:5725–5734. https://doi.org/10.1016/j.tet.2005.04.039

    Article  CAS  Google Scholar 

  8. 8.

    Heydari A, Khaksar S, Akbari J et al (2007) Direct reductive amination and selective 1,2-reduction of α,β-unsaturated aldehydes and ketones by NaBH4 using H3PW12O40 as catalyst. Tetrahedron Lett 48:1135–1138. https://doi.org/10.1016/j.tetlet.2006.12.069

    Article  CAS  Google Scholar 

  9. 9.

    Menche D, Hassfeld J, Li J et al (2006) Hydrogen bond catalyzed direct reductive amination of ketones. Org Lett 8:741–744. https://doi.org/10.1021/ol053001a

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Abdel-Magid AF, Carson KG, Harris BD et al (1996) Reductive amination of aldehydes and ketones with sodium Triacetoxyborohydride. Studies on direct and indirect reductive amination Procedures1. J Organomet Chem 61:3849–3862. https://doi.org/10.1021/jo960057x

    Article  CAS  Google Scholar 

  11. 11.

    Cossar PJ, Hizartzidis L, Simone MI et al (2015) The expanding utility of continuous flow hydrogenation. Org Biomol Chem 13:7119–7130. https://doi.org/10.1039/C5OB01067E

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Brechtelsbauer C, Hii KK (Mimi) (2014) 1. Catalysis in flow. In: Applications fundamentals and applications. De Gruyter, Berlin. https://doi.org/10.1515/9783110367508.3

  13. 13.

    de Bellefon C (2014) 2. Catalytic engineering aspects of flow chemistry. In: Applications fundamentals and applications. De Gruyter, Berlin. https://doi.org/10.1515/9783110367508.31

  14. 14.

    Baumann M, Baxendale IR, Hornung CH et al (2014) Synthesis of Riboflavines, Quinoxalinones and benzodiazepines through Chemoselective flow based hydrogenations. Molecules 19:9736–9759. https://doi.org/10.3390/molecules19079736

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Desai B, Kappe CO (2005) Heterogeneous hydrogenation reactions using a continuous flow high pressure device. J Comb Chem 7:641–643. https://doi.org/10.1021/cc050076x

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Jones RV, Godorhazy L, Varga N et al (2006) Continuous-flow high pressure hydrogenation reactor for optimization and high-throughput synthesis. J Comb Chem 8:110–116

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Avril A, Hornung CH, Urban A et al (2017) Continuous flow hydrogenations using novel catalytic static mixers inside a tubular reactor. React Chem Eng 2:180–188. https://doi.org/10.1039/C6RE00188B

    Article  CAS  Google Scholar 

  18. 18.

    Hornung CH, Nguyen X, Carafa A et al (2017) Use of catalytic static mixers for continuous flow gas–liquid and transfer hydrogenations in organic synthesis. Org Process Res Dev 21:1311–1319. https://doi.org/10.1021/acs.oprd.7b00180

    Article  CAS  Google Scholar 

  19. 19.

    Nguyen X, Carafa A, Hornung CH (2017) Hydrogenation of vinyl acetate using a continuous flow tubular reactor with catalytic static mixers. Chem Eng Process Process Intensif. https://doi.org/10.1016/j.cep.2017.12.007

  20. 20.

    Bagal DB, Watile RA, Khedkar MV et al (2012) PS-Pd–NHC: an efficient and heterogeneous recyclable catalyst for direct reductive amination of carbonyl compounds with primary/secondary amines in aqueous medium. Catal Sci Technol 2:354–358. https://doi.org/10.1039/C1CY00392E

    Article  CAS  Google Scholar 

  21. 21.

    Von Angerer E, Egginger G, Kranzfelder G et al (1982) N,N’-Dialkyl-1,2-bis(hydroxyphenyl)ethylenediamines and N,N’-dialkyl-4,5-bis(4-hydroxyphenyl)imidazolidines. Syntheses and evaluation of their mammary tumor inhibiting activity. J Med Chem 25:832–837. https://doi.org/10.1021/jm00349a013

    Article  Google Scholar 

  22. 22.

    Lutz RE, Bailey PS, Rowlett RJ et al (1947) Antimalarials. Some new secondary and tertiary Arylmethylamines. J Organomet Chem 12:760–766. https://doi.org/10.1021/jo01170a003

    Article  CAS  Google Scholar 

  23. 23.

    Katritzky AR, Yang Z, Lam JN (1992) Aminoalkylbenzotriazoles: reagents for the aminoalkylation of electron rich heterocycles. Tetrahedron 48:4971–4978. https://doi.org/10.1016/S0040-4020(01)81590-8

    Article  CAS  Google Scholar 

  24. 24.

    Schwoegler EJ, Adkins H (1939) Preparation of certain amines. J Am Chem Soc 61:3499–3502. https://doi.org/10.1021/ja01267a081

    Article  CAS  Google Scholar 

  25. 25.

    Saa JM, Llobera A, Deya PM (1987) Fremy’s salt promoted oxidative degradation of p-Hydroxybenzylamines and p-Hydroxybenzamides. A novel approach to p-Quinones. Chem Lett 16:771–774. https://doi.org/10.1246/cl.1987.771

    Article  Google Scholar 

  26. 26.

    Eggert H, Djerassi C (1973) Carbon-13 nuclear magnetic resonance spectra of acyclic aliphatic amines. J Am Chem Soc 95:3710–3718. https://doi.org/10.1021/ja00792a040

    Article  CAS  Google Scholar 

  27. 27.

    Hollmann D, Bähn S, Tillack A, Beller M (2008) N -Dealkylation of aliphatic amines and selective synthesis of monoalkylated aryl amines. Chem Commun :3199–3201. https://doi.org/10.1039/B803114B

  28. 28.

    Rindfusz RE, Harnack VL (1920) Heterocyclic compounds of N-arylamino alcohols. J Am Chem Soc 42:1720–1725. https://doi.org/10.1021/ja01453a024

    Article  CAS  Google Scholar 

  29. 29.

    Fujita K, Enoki Y, Yamaguchi R (2003) Iridium-catalyzed N-Heterocyclization of primary amines with diols: N-Benzylpiperidine. In: Organic syntheses. John Wiley & Sons, Inc. https://doi.org/10.1002/0471264229.os083.28

  30. 30.

    Blake LC, Roy A, Neul D et al (2013) Benzylmorpholine analogs as selective inhibitors of lung cytochrome P450 2A13 for the chemoprevention of lung Cancer in tobacco users. Pharm Res 30:2290–2302. https://doi.org/10.1007/s11095-013-1054-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Al-Qawasmeh RA, Lee Y, Cao M-Y et al (2009) 11-Phenyl-[b,e]-dibenzazepine compounds: novel antitumor agents. Bioorg Med Chem Lett 19:104–107. https://doi.org/10.1016/j.bmcl.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Vapourtec Flow Chemistry Equipment. http://www.vapourtec.co.uk/. Accessed 23 Oct 2015

Download references

Acknowledgements

The authors thank Winston Liew for ICP-OES measurements, Andrew Urban for cold-spraying of the nickel catalyst, Darren Fraser for 3D printing of the mixer substrates, John Tsanaktsidis, Oliver Hutt and Dayalan Gunasegaram for many helpful discussions and the Active Integrated Matter (AIM) Future Science Platform for financial support for Charlotte Genet.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian H. Hornung.

Electronic supplementary material

ESM 1

(DOCX 4122 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Genet, C., Nguyen, X., Bayatsarmadi, B. et al. Reductive aminations using a 3D printed supported metal(0) catalyst system. J Flow Chem 8, 81–88 (2018). https://doi.org/10.1007/s41981-018-0013-6

Download citation

Keywords

  • Heterogeneous catalysis
  • Flow chemistry
  • Hydrogenation
  • Amines
  • Palladium
  • Nickel