Skip to main content

Supercritical hydrothermal flow synthesis of xonotlite nanofibers

Abstract

This article reports a satisfactory and innovative method for the synthesis of xonotlite using a flow reactor and supercritical water. This study widens the variety of inorganic nanofibers produced in record breaking times by means of continuous reactors working under supercritical water conditions. In particular, the synthesis time of xonotlite, which takes normally more than 5 h, was reduced to only 20s by carrying out the reaction at 400 °C and 23.5 MPa. Resulting product was studied by several characterization techniques: x-ray diffraction, transmission electron microscopy, 29Si and 1H nuclear magnetic resonance and infrared spectroscopy. Furthermore, obtained product consisted of highly pure and crystalline flat nanofibers of 1–10 μm long with a length to diameter ratio of the order of 100. Also, the typical deviation from the ideal structure observed by nuclear magnetic resonance and the presence of Si-OH were explained in terms of surface defects. This work reinforces the interests of using supercritical conditions for the fast synthesis of crystalline nano-calcium silicates which, due to the number of potential industrial applications and the scalability of the technology, might represent technological breakthrough.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Shaw S, Clark SM, Henderson CMB (2000) Hydrothermal formation of the calcium silicate hydrates, tobermorite and xonotlite : an in situ synchrotron study. Chem Geol 167:129–140

    Article  CAS  Google Scholar 

  2. Wei G, Liu Y, Zhang X et al (2011) Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf 54:2355–2366

    Article  CAS  Google Scholar 

  3. Smeets L, van de Worp B, Dewald K (2011) Improved friction performance by using highly porous, thermally stable particles; Promaxon® -D. SAE Tech Pap

  4. Kloimsteln E, Eatermann R (1990) United States Patent 191 Patent Number : 4–7

  5. Li X, Chang J (2004) Synthesis of Wollastonite single crystal nanowires by a novel hydrothermal route. Chem Lett 33:1458–1459

    Article  CAS  Google Scholar 

  6. Siriphannon P, Kameshima Y, Yasumori A et al (2000) Influence of preparation conditions on the microstructure and bioactivity of α-CaSiO3 ceramics : Formation of hydroxyapatite in simulated body fluid. J Biomed Mater Res 52:30–39

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Ding C (2002) Morphology of apatite formed on surface of wollastonite coating soaked in simulate body fluid. Mater Lett 57:652–655

    Article  CAS  Google Scholar 

  8. Liu X, Ding C, Chu PK (2004) Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials 25:1755–1761

    Article  CAS  PubMed  Google Scholar 

  9. Lin K, Zhai W, Ni S et al (2005) Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceram Int 31:323–326

    Article  CAS  Google Scholar 

  10. De Aza P, Luklinska Z, Anseau M et al (1999) Bioactivity of pseudowollastonite in human saliva. J Dent 27:107–113

    Article  PubMed  Google Scholar 

  11. Li X, Chang J (2006) A novel hydrothermal route to the synthesis of xonotlite nanofibers and investigation on their bioactivity. J Mater Sci 41:4944–4947

    Article  CAS  Google Scholar 

  12. Black L, Garbev K, Stumm A (2009) Structure, bonding and morphology of hydrothermally synthesised xonotlite. Adv Appl Ceram 108:137–144

    Article  CAS  Google Scholar 

  13. Yazdani A, Rezaie HR, Ghassai H (2010) Investigation of hydrothermal synthesis of wollastonite using silica and nano silica at different pressures. J Ceram Process Res 11:348–353

    Google Scholar 

  14. Hong SY, Glasser FP (2004) Phase relations in the CaO-SiO2-H2O system to 200 °C at saturated steam pressure. Cem Concr Res 34:1529–1534

    Article  CAS  Google Scholar 

  15. Black L, Garbev K, Stemmermann P et al (2003) Characterisation of crystalline C-S-H phases by X-ray photoelectron spectroscopy. Cem Concr Res 33:899–911

    Article  CAS  Google Scholar 

  16. Low NMP, Beaudoin JJ (1993) Mechanical properties and microstructure of cement binders reinforced with synthesized xonotlite micro-fibres. Cem Concr Res 23:1016–1028

    Article  CAS  Google Scholar 

  17. Tan W, Zhu G, Liu Y et al (2015) Effects and mechanism research of the crystalline state for the semi-crystalline calcium silicate. Cem Concr Res 72:69–75

    Article  CAS  Google Scholar 

  18. Lin K, Chang J, Chen G et al (2007) A simple method to synthesize single-crystalline wollastonite nanowires. J Cryst Growth 300:267–271

    Article  CAS  Google Scholar 

  19. Cao J, Liu F, Lin Q, Zhang Y (2008) Hydrothermal synthesis of xonotlite from carbide slag. Prog Nat Sci 18:1147–1153

    Article  CAS  Google Scholar 

  20. Dumas A, Claverie M, Slostowski C et al (2016) Fast-Geomimicking using chemistry in supercritical water. Angew Chem Int Ed 55:9868–9871

    Article  CAS  Google Scholar 

  21. Claverie M, Dumas A, Carême C et al (2018) Synthetic talc and talc-like structures: preparation, features and applications. Chem - A Eur J 24:519–542

    Article  CAS  Google Scholar 

  22. Aymonier C, Philippot G, Erriguible A, Marre S (2018) Playing with chemistry in supercritical solvents and the associated technologies for advanced materials by design. J Supercrit Fluids 134:184–196

    Article  CAS  Google Scholar 

  23. Diez-Garcia M, Gaitero JJ, Dolado JS, Aymonier C (2017) Ultra-fast supercritical hydrothermal synthesis of Tobermorite under thermodynamically metastable conditions. Angew Chem Int Ed 56:3162–3167

    Article  CAS  Google Scholar 

  24. Pascu O, Marre S, Cacciuttolo B et al (2017) Instant one-pot preparation of functional layered double hydroxides (LDHs) via a continuous hydrothermal approach. ChemNanoMat 3:614–619

    Article  CAS  Google Scholar 

  25. Tsang M, Philippot G, Aymonier C, Sonnemann G (2016) Anticipatory life-cycle assessment of supercritical fluid synthesis of barium strontium titanate nanoparticles. Green Chem 18:4924–4933

    Article  CAS  Google Scholar 

  26. Tsang MP, Philippot G, Aymonier C, Sonnemann G (2018) Supercritical fluid flow synthesis to support sustainable production of engineered nanomaterials: case study of titanium dioxide. ACS Sustain Chem Eng 6:5142–5151

    Article  CAS  Google Scholar 

  27. Mostafa NY, Shaltout AA, Omar H, Abo-El-Enein SA (2009) Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites. J Alloys Compd 467:332–337

    Article  CAS  Google Scholar 

  28. Mehrali M, Moghaddam E, Shirazi SFS et al (2014) Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces 6:3947–3962

    Article  CAS  PubMed  Google Scholar 

  29. Churakov SV, Mandaliev P (2008) Structure of the hydrogen bonds and silica defects in the tetrahedral double chain of xonotlite. Cem Concr Res 38:300–311

    Article  CAS  Google Scholar 

  30. Noma H, Adachi Y, Matsuda Y, Yokoyama T (1998) 29Si and 1H NMR of natural and synthetic Xonotlite. Chem Lett 27:219–220

    Article  Google Scholar 

  31. Halasz I, Li R, Agarwal M, Miller N (2007) From Zeolites to Porous MOF Materials - The 40th Anniversary of International Zeolite Conference, Proceedings of the 15th International Zeolite Conference. Elsevier

  32. Hansen MR, Jakobsen HJ, Skibsted J (2003) 29Si chemical shift anisotropies in calcium silicates from high-field 29Si MAS NMR spectroscopy. Inorg Chem 42:2368–2377

    Article  CAS  PubMed  Google Scholar 

  33. Cong X, Kirkpatrick RJ (1996) 29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrates. Adv Cem Based Mater 3:133–143

    Article  CAS  Google Scholar 

  34. Cong X, Kirkpatrick RJ (1996) 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv Cem Based Mater 3:144–156

    Article  CAS  Google Scholar 

  35. Kudoh Y, Takeuchi Y (1979) Polytypism in xonotlite: (I) structure of an A-1 polytype. Mineral J 9:349–373

    Article  CAS  Google Scholar 

  36. Kalousek GL, Mitsuda T, Taylor HFW (1977) Xonotlite: cell parameters, thermogravimetry and analytical electron microscopy. Cem Concr Res 7:305–312

    Article  CAS  Google Scholar 

  37. Giraudo N, Krolla-Sidenstein P, Bergdolt S et al (2015) Early stage hydration of wollastonite: kinetic aspects of the metal-proton exchange reaction. J Phys Chem C 119:10493–10499

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out under the umbrella of the BASKRETE initiative and supported by the Basque Government under the ELKARTEK Program (project SUPER). In addition, Marta Diez is grateful to the University of the Basque Country (UPV/EHU) and the University of Bordeaux for her pre-doctoral fellowship, within the framework of the Cross-Border Euroregional Campus of International Excellence IDEX Bordeaux–Euskampus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Aymonier.

Electronic supplementary material

ESM 1

(DOCX 484 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diez-Garcia, M., Gaitero, J.J., Santos, J.I. et al. Supercritical hydrothermal flow synthesis of xonotlite nanofibers. J Flow Chem 8, 89–95 (2018). https://doi.org/10.1007/s41981-018-0012-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-018-0012-7

Keywords