Advertisement

Journal of Flow Chemistry

, Volume 8, Issue 1, pp 3–9 | Cite as

Simple and selective conversion of fructose into HMF using extractive-reaction process in microreactor

  • Janine Lueckgen
  • Laurent Vanoye
  • Régis Philippe
  • Marion Eternot
  • Pascal Fongarland
  • Claude de Bellefon
  • Alain Favre-Réguillon
Communications
  • 93 Downloads

Abstract

An extractive-reaction process for the synthesis of HMF from fructose was implemented in microreactor. Experimental conditions were 10 wt.% fructose in water, MIBK as extracting solvent and HCl as catalyst in a temperature window of 120–160 °C, a MIBK/H2O ratio 1 to 9 and an HCl concentration of 0.25–2 M. The dehydration of fructose to HMF is achieved in less than 40s with a total HMF yield higher than 90% at 150 °C. Aqueous and organic phase spontaneously separate at the outlet of the reactor and HMF is obtained in MIBK with a yield of 80% and a purity of 92%.

Graphical abstract

Keywords

HMF Microreactor Continuous extraction 

Notes

Acknowledgements

J. L. gratefully acknowledges financial support by “Institut de Chimie de Lyon” (ICL). Authors would like to thank F. Bornette for technical assistance.

References

  1. 1.
    Kuster BFM (1990). Starch - Stärke 42:314–321CrossRefGoogle Scholar
  2. 2.
    Teong SP, Yi G, Zhang Y (2014). Green Chem 16:2015–2026CrossRefGoogle Scholar
  3. 3.
    Yu IKM, Tsang DCW (2017). Bioresour Technol 238:716–732CrossRefGoogle Scholar
  4. 4.
    van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013). Chem Rev 113:1499–1597CrossRefGoogle Scholar
  5. 5.
    Tsilomelekis G, Josephson TR, Nikolakis V, Caratzoulas S (2014). ChemSusChem 7:117–126CrossRefGoogle Scholar
  6. 6.
    Fayet C, Gelas J (1983). Carbohydr Res 122:59–68CrossRefGoogle Scholar
  7. 7.
    Ilgen F, Ott D, Kralisch D, Reil C, Palmberger A, Konig B (2009). Green Chem 11:1948–1954CrossRefGoogle Scholar
  8. 8.
    Ståhlberg T, Fu W, Woodley JM, Riisager A (2011). ChemSusChem 4:451–458CrossRefGoogle Scholar
  9. 9.
    Moreau C, Finiels A, Vanoye L (2006). J Mol Catal A Chem 253:165–169CrossRefGoogle Scholar
  10. 10.
    Shi CY, Xin JY, Liu XM, Lu XM, Zhang SJ (2016). ACS Sustain Chem Eng 4:557–563CrossRefGoogle Scholar
  11. 11.
    Saha B, Abu-Omar MM (2014). Green Chem 16:24–38CrossRefGoogle Scholar
  12. 12.
    Hohmann L, Kurt SK, Soboll S, Kockmann N (2016). J Flow Chem 6:181–190CrossRefGoogle Scholar
  13. 13.
    Peniston QP Manufacture of 5-hydroxymethyl 2-furfural US Patent 2,750,394, (May 22, 1952)Google Scholar
  14. 14.
    Cope AC Production and recovery of furans US Patent 2,917,520, (Dec. 15, 1959)Google Scholar
  15. 15.
    Román-Leshkov Y, Chheda JN, Dumesic JA (2006). Science 312:1933–1937CrossRefGoogle Scholar
  16. 16.
    Roman-Leshkov Y, Dumesic JA (2009). Top Catal 52:297–303CrossRefGoogle Scholar
  17. 17.
    Chheda JN, Roman-Leshkov Y, Dumesic JA (2007). Green Chem 9:342–350CrossRefGoogle Scholar
  18. 18.
    Shen Y, Sun J, Yi Y, Li M, Wang B, Xu F, Sun R (2014). Bioresour Technol 172:457–460CrossRefGoogle Scholar
  19. 19.
    Qing Q, Guo Q, Zhou L, Wan Y, Xu Y, Ji H, Gao X, Zhang Y (2017). Bioresour Technol 226:247–254CrossRefGoogle Scholar
  20. 20.
    Blumenthal LC, Jens CM, Ulbrich J r, Schwering F, Langrehr V, Turek T, Kunz U, Leonhard K, Palkovits R (2016). ACS Sustain Chem Eng 4:228–235CrossRefGoogle Scholar
  21. 21.
    Jiang N, Qi W, Huang R, Wang M, Su R, He Z (2014). J Chem Technol Biotechnol 89:56–64CrossRefGoogle Scholar
  22. 22.
    Hessel V, Kralisch D, Kockmann N, Noel T, Wang Q (2013). ChemSusChem 6:746–789CrossRefGoogle Scholar
  23. 23.
    Keseru GM, Soos T, Kappe CO (2014). Chem Soc Rev 43:5387–5399CrossRefGoogle Scholar
  24. 24.
    Dencic I, Noel T, Meuldijk J, de Croon M, Hessel V (2013). Eng Life Sci 13:326–343CrossRefGoogle Scholar
  25. 25.
    Tuercke T, Panic S, Loebbecke S (2009). Chem Eng Technol 32:1815–1822CrossRefGoogle Scholar
  26. 26.
    Brasholz M, von Kaenel K, Hornung CH, Saubern S, Tsanaktsidis J (2011). Green Chem 13:1114–1117CrossRefGoogle Scholar
  27. 27.
    Shimanouchi T, Kataoka Y, Yasukawa M, No T, Kimura Y (2013). Solvent Extr Res Dev Jpn 20:205–212CrossRefGoogle Scholar
  28. 28.
    Shimanouchi T, Tanifuji T, Fujioka S, Terasaka K, Kimura Y (2014). Solvent Extr Res Dev Jpn 21:201–209CrossRefGoogle Scholar
  29. 29.
    Shimanouchi T, Kataoka Y, Tanifuji T, Kimura Y, Fujioka S, Terasaka K (2016). AICHE J 62:2135–2143CrossRefGoogle Scholar
  30. 30.
    Muranaka Y, Nakagawa H, Masaki R, Maki T, Mae K (2017). Ind Eng Chem Res 56:10998–11005CrossRefGoogle Scholar
  31. 31.
    Kuster BFM, van der Steen HJC (1977). Starch - Stärke 29:99–103CrossRefGoogle Scholar
  32. 32.
    Patil SKR, Lund CRF (2011). Energy Fuel 25:4745–4755CrossRefGoogle Scholar
  33. 33.
    Mohammad S, Held C, Altuntepe E, Köse T, Sadowski G (2016). J Phys Chem B 120:3797–3808CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  • Janine Lueckgen
    • 1
    • 2
  • Laurent Vanoye
    • 1
  • Régis Philippe
    • 1
  • Marion Eternot
    • 2
  • Pascal Fongarland
    • 1
  • Claude de Bellefon
    • 1
  • Alain Favre-Réguillon
    • 1
    • 3
  1. 1.Laboratoire de Génie des Procédés CatalytiquesUniversity of LyonVilleurbanneFrance
  2. 2.Institut de Recherches sur la Catalyse et l’Environnement de LyonUniversity of LyonVilleurbanneFrance
  3. 3.Conservatoire National des Arts et Métiers, Equipe Pédagogique Nationale 7ParisFrance

Personalised recommendations