Advertisement

Journal of Flow Chemistry

, Volume 8, Issue 1, pp 29–34 | Cite as

A continuous-flow procedure for the synthesis of 4-Benzylidene-pyrazol-5-one derivatives

  • Jiangang Yu
  • Jianguo Xu
  • Jie Li
  • Yi Jin
  • Wanghui Xu
  • Zhiqun Yu
  • Yanwen Lv
Full Paper
  • 47 Downloads

Abstract

A two-step flow reactor has been set up for an expeditious synthesis of 4-benzylidene-pyrazol-5-one derivatives. This procedure involved cyclization of aromatic hydrazine/β-keto ester and subsequent Knoevenagel condensation reaction with aromatic aldehydes in tandem without isolation of intermediates. Residence time was reduced to less than 2 min in total through conducting this reaction at a relatively high temperature. Accordingly, 15 samples were achieved and isolated in moderate to excellent yields.

Graphical abstract

Keywords

Continuous-flow chemistry 4-Benzylidene-pyrazol-5-one Knoevenagel condensation 

Notes

Acknowledgments

Financial support from the National Science Foundation of China (21476128) is gratefully acknowledged.

Supplementary material

41981_2018_3_MOESM1_ESM.doc (19.1 mb)
ESM 1 (DOC 19562 kb)

References

  1. 1.
    A. Weissberger. In: Wiley, R. H., Wiley, P. (eds.) The Chemistry of Heterocyclic Compounds: Pyrazolinones, Pyrazolidones and Derivatives. Wiley, New York; 1964Google Scholar
  2. 2.
    S. Scheibye, A. A. El-Barbary, S. O. Lawesson, H. Fritz, G. Rihs. Tetrahedron 1982; 38, 3753Google Scholar
  3. 3.
    Y. Kakiuchi, N. Sasaki, M. Satoh-Masuoka, H. Murofushi, Murakami-Murofushi, K. Biochem. Biophys. Res. Commun. 2004; 320, 1351Google Scholar
  4. 4.
    S. P. Hiremath, K. Rudresh, A. R. Saundane. Indian J. Chem. 2002; 41B, 394Google Scholar
  5. 5.
    In: H. A. Lubs (ed.) The Chemistry of Synthetic Dyes and Pigments. American Chemical Society, Washington, DC; 1970Google Scholar
  6. 6.
    Joerg S, Reinhold G, Joachim OS, Robert S, Klaus L, Offen G (1988) Chem Abstr 108:167465 DE3, 625Google Scholar
  7. 7.
    A. B. Uzoukwu. Polyhedron 1993; 12, 2719Google Scholar
  8. 8.
    G. Desimoni, L. Astolfi, M. Cambieri, A. Gamber, G. Tacconi. Tetrahedron 1973; 29, 2627Google Scholar
  9. 9.
    W. S. Hamama. Synth. Commun. 2001; 31, 1335Google Scholar
  10. 10.
    M. M. Mojtahedi, M. R. Jalali, M. S. Abaee, M. Bolourtchian. Heterocycl. Commun. 2006; 12, 225Google Scholar
  11. 11.
    B. R. Vaddula, R. S. Varma, J. Leazer. Tetrhedron Lett. 2013; 54, 1538Google Scholar
  12. 12.
    M. M. Mojtahedi, M. Javadpour, M. S. Abaee. Ultrason. Sonochem. 2008; 15, 828Google Scholar
  13. 13.
    M. X. Guo, J. X. Guo, D. Z. Jia, H. Liu, L. Liu, A. J. Liu, F. Li. J. Mol. Struct. 2013; 1035, 271Google Scholar
  14. 14.
    Ahmad N (2011) Acta Ciencia Indica. Chemistry 37:5Google Scholar
  15. 15.
    E. Garcia-Egido, S. Y. Wong, B. H. Warrington. Lab Chip 2002; 2, 31Google Scholar
  16. 16.
    M. Fernandez-Suarez, S. Y. Wong, B. H. Warrington. Lab Chip 2002; 2, 170Google Scholar
  17. 17.
    E. Garcia-Egido, V. Spikmans, S. Y. Wong, B. H. Warrington. Lab Chip 2003; 3, 73Google Scholar
  18. 18.
    D. Obermayer, T. N. Glasnov, C. O. Kappe. J. Org. Chem. 2011; 76, 6657Google Scholar
  19. 19.
    J. Pelleter, F. Renaud. Org. Process. Res. Dev. 2009; 13, 698Google Scholar
  20. 20.
    M. S. K. Youssef, S. A. M. Metwally, M. A. El-Mahraby, M. I. Younes. J. Heterocyclic Chem. 1984; 21, 1747Google Scholar
  21. 21.
    P. Sun, D. Yang, W. Wei, X. Sun, W. Zhang, H. Zhang, Y. Wang, H. Wang. Tetrahedron 2017; 73, 2022Google Scholar
  22. 22.
    V. Hessel (2009). Chem. Eng. Technol. 32, 1655Google Scholar
  23. 23.
    B. Wahab, G. Ellames, S. Passey, P. Watts (2010). Tetrahedron 66, 3861Google Scholar
  24. 24.
    E. Riva, S. Gagliardi, C. Mazzoni, D. Passarella, A. Rencurosi, D. Vigo, A. Rencurosi (2010). Tetrahedron 66, 3242Google Scholar
  25. 25.
    Z. Q. Yu, Y. W. Lv, C. M. Yu (2012). Org. Process. Res. Dev. 16, 1669Google Scholar
  26. 26.
    J. Wegner, S. Ceylan, A. Kirschning. Adv. Synth. Catal. 2012; 354, 17Google Scholar
  27. 27.
    C. Wiles, P. Watts. Green Chem. 2012; 14, 38Google Scholar
  28. 28.
    Z. Q. Yu, Y. W. Lv, C. M. Yu, W. K. Su. Tendrahedron Lett. 2013; 54, 1261Google Scholar
  29. 29.
    Z. Q. Yu, Y. W. Lv, C. M. Yu, W. K. Su. Org. Process Res. Dev. 2013; 17, 438Google Scholar
  30. 30.
    C. Wiles, P. Watts. Green Chem. 2014; 16, 55Google Scholar
  31. 31.
    D. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel and T. Noël. Chem. Rev. 2016; 116, 10276Google Scholar
  32. 32.
    B. Gutmann, D. Cantillo and C. O. Kappe. Angew. Chem. Int. Ed. 2015; 54, 6688–6728Google Scholar
  33. 33.
    J. Britton. J. Flow Chem. 2016; 6, 123Google Scholar
  34. 34.
    S. Chada, D. Mandala and P. Watts. J. Flow Chem. 2017; 7, 37Google Scholar
  35. 35.
    Y. W. Lv, Z. Q. Yu, W. K. Su. Org. Process. Res. Dev. 2011; 15, 471Google Scholar
  36. 36.
    J. Yu, J. Xu, Z. Yu, Y. Jin, J. Li, Y. Lv. J. Flow Chem. 2017; 7, 33Google Scholar
  37. 37.
    J. Xu, J. Yu, Y. Jin, J. Li, Z. Yu, Y. Lv. Chem. Eng. Process 2017; 121, 144Google Scholar
  38. 38.
    W. P. Bula, W. Verboom, D. N. Reinhoudt, H. J. G. E. Gardeniers. Lab Chip 2007; 7, 1717Google Scholar
  39. 39.
    E. G. Moschetta, S. Negretti, K. M. Chepiga, N. A. Brunelli, Y. Labreche, Y. Feng, F. Rezaei, R. P. Lively, W. J. Koros, H. M. L. Davies, C. W. Jones. Angew. Chem. Int. Ed. 2015; 54, 6470Google Scholar
  40. 40.
    M. Lopez-Pastor, A. Dominguez-Vidal, M. J. Ayora-Canada, T. Laurell, M. Valcarcel, B. Lendl. Lab Chip 2007; 7, 126Google Scholar
  41. 41.
    H. Seyler, S. Haid, T.-H. Kwon, D. J. Jones, P. Baeuerle, A. B. Holmes, W. W. H. Wong. Aust. J. Chem. 2013; 66, 151Google Scholar
  42. 42.
    V. Pandarus, G. Gingras, F. Beland, R. Ciriminna, M. Pagliaro. Catal. Sci. Technol. 2011; 1, 1600Google Scholar
  43. 43.
    M. Tarleton, A. McCluskey. Tetrahedron Lett. 2011; 52, 1583Google Scholar
  44. 44.
    N. Nikbin, P. Watts. Org. Process. Res. Dev. 2004; 8, 942Google Scholar
  45. 45.
    R. Munirathinam, J. Huskens, W. Verboom. Adv. Synth. Catal. 2015; 357, 1093Google Scholar
  46. 46.
    K. Suzdalev, M. Babakova. Russ. J. Org. Chem. 2005; 41, 233Google Scholar
  47. 47.
    Z. Han, X. Liang, Y. Wang, J. Qing, L. Cao, L. Shang, Z. Yin. Eur. J. Med. Chem. 2016; 116, 147Google Scholar
  48. 48.
    R. Ramajayam, K.-P. Tan, H.-G. Liu, P.-H. Liang, Bioorg. Med. Chem. 2010; 18, 7849Google Scholar
  49. 49.
    M. Parveen, S. Azaz, A. M. Malla, F. Ahmad, M. Ahmad, M. Gupta. RSC Adv. 2016; 6, 148Google Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  • Jiangang Yu
    • 1
  • Jianguo Xu
    • 1
  • Jie Li
    • 1
  • Yi Jin
    • 1
  • Wanghui Xu
    • 1
  • Zhiqun Yu
    • 2
  • Yanwen Lv
    • 1
  1. 1.College of Chemical and Material EngineeringQuzhou UniversityQuzhouPeople’s Republic of China
  2. 2.Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations