Sustainable synthesis of N-methylated peptides in a continuous-flow fixed bed reactor
- 14 Downloads
Abstract
A rapid, simplified and highly efficient continuous-flow solid-phase peptide synthesis technology is reported for the direct synthesis of mono and multiple N-methylated cyclic alanine and valine peptides. Through an optimization study, we find that only 1.5 equivalents of the amino acids are sufficient for the couplings to maintain excellent conversions. Importantly, the technology is outstandingly sustainable, since three chemical steps are cancelled from the procedure and low amount of solvent is used, compared to traditional technologies. Furthermore, it is also applicable to the coupling of challenging amino acids, since pentavalines were constructed with high yield. The technology was successfully upscaled and peptide cyclization was carried out too.
ᅟ
Keywords
peptides synthesis peptidomimetics continuous-flow SPPS N-methylationNotes
Acknowledgements
We are grateful to the Hungarian Research Foundation (OTKA No. K 115731). The financial support of the GINOP-2.3.2-15-2016-00014 project is acknowledged. Supported by the ÚNKP-16-4-III New National Excellence Program of the Ministry of Human Capacities
Supplementary material
References
- 1.Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994). J Med Chem 37:1233–1251CrossRefGoogle Scholar
- 2.Thompson LA, Ellman JA (1996). Chem Rev 96:555–600CrossRefGoogle Scholar
- 3.Adessi C, Soto C (2002). Curr Med Chem 9:963–978CrossRefGoogle Scholar
- 4.Wender PA, Verma VA, Paxton TJ, Pillow TH (2008). Acc Chem Res 41:40–49CrossRefGoogle Scholar
- 5.Banta S, Megeed Z, Casali M, Rege K, Yarmush ML (2007). J Nanosci Nanotechnol 7:387–401CrossRefGoogle Scholar
- 6.Teixido M, Giralt E (2008). J Pept Sci 14:163–173CrossRefGoogle Scholar
- 7.Briggs BD, Knecht MR (2012). J Phys Chem Lett 3:405–418CrossRefGoogle Scholar
- 8.Morelli G, Toniolo C, Venanzi M (2014). J Pept Sci 20:451–452CrossRefGoogle Scholar
- 9.Tamerler C, Kacar T, Sahin D, Fong H, Sarikaya M (2007). Mater Sci Eng C-Biomimetic Supramol Syst 27:558–564CrossRefGoogle Scholar
- 10.Krishna OD, Kiick KL (2010). Biopolymers 94:32–48CrossRefGoogle Scholar
- 11.Remaut K, Sanders NN, De Geest BG, Braeckmans K, Demeester J, De Smedt SC (2007). Mater Sci Eng R-Rep 58:117–161CrossRefGoogle Scholar
- 12.Nagarkar RP, Hule RA, Pochan DJ, Schneider JP (2010). Biopolymers 94:141–155CrossRefGoogle Scholar
- 13.Mahato RI, Narang AS, Thoma L, Miller DD (2003). Crit Rev Ther Drug Carrier Syst 20:153–214CrossRefGoogle Scholar
- 14.McGregor DP (2008). Curr Opin Pharmac 8:616–619CrossRefGoogle Scholar
- 15.Khafagy ES, Morishita M (2012). Adv Drug Deliv Rev 64:531–539CrossRefGoogle Scholar
- 16.Amidon GL, Lee HJ (1994). Annual Rev Pharm Toxicology 34:321–341CrossRefGoogle Scholar
- 17.Haviv F, Fitzpatrick TD, Swenson RE, Nichols CJ, Mort NA, Bush EN, Diaz G, Bammert G, Nguyen A, Rhutasel NS, Nellans HN, Hoffman DJ, Johnson ES, Greer J (1993). J Med Chem 36:363–369CrossRefGoogle Scholar
- 18.Cody WL, He JX, Reily MD, Haleen SJ, Walker DM, Reyner EL, Stewart BH, Doherty AM (1997). J Med Chem 40:2228–2240CrossRefGoogle Scholar
- 19.Yu J, Butelman ER, Woods JH, Chait BT, Kreek MJ (1997). J Pharm Exp Ther 280:1147–1151Google Scholar
- 20.Fusetani N, Matsunaga S (1993). Chem Rev 93:1793–1806CrossRefGoogle Scholar
- 21.Wipf P (1995). Chem Rev 95:2115–2134CrossRefGoogle Scholar
- 22.Chatterjee J, Laufer B, Beck JG, Helyes Z, Pinter E, Szolcsanyi J, Horvath A, Mandl J, Reubi JC, Keri G, Kessler H (2011). ACS Med Chem Lett 2:509–514CrossRefGoogle Scholar
- 23.Chatterjee J, Rechenmacher F, Kessler H (2013). Angew Chem Int Ed 52:254–269CrossRefGoogle Scholar
- 24.Holladay MW, Kopecka H, Miller TR, Bednarz L, Nikkel AL, Bianchi BR, Witte DG, Shiosaki K, Lin CW, Asin KE, Nadzan AM (1994). J Med Chem 37:630–635CrossRefGoogle Scholar
- 25.Teixido M, Albericio F, Giralt E (2005). J Pept Res 65:153–166CrossRefGoogle Scholar
- 26.Chatterjee J, Mierke D, Kessler H (2006). J Am Chem Soc 128:15164–15172CrossRefGoogle Scholar
- 27.Chatterjee J, Mierke DF, Kessler H (2008). Chem Eur J 14:1508–1517CrossRefGoogle Scholar
- 28.Brunissen A, Ayoub M, Lavielle S (1996). Tetrahedron Lett 37:6713–6716CrossRefGoogle Scholar
- 29.Arnold U, Huck BR, Gellman SH, Raines RT (2013). Protein Sci 22:274–279CrossRefGoogle Scholar
- 30.Jahnisch K, Hessel V, Lowe H, Baerns M (2004). Angew Chem Int Ed 43:406–446CrossRefGoogle Scholar
- 31.Ahmed-Omer B, Brandt JC, Wirth T (2007). Org Biomol Chem 5:733–740CrossRefGoogle Scholar
- 32.Rasheed M, Wirth T (2011). Angew Chem Int Ed 50:357–358CrossRefGoogle Scholar
- 33.Kovács L, Szőllősi G, Fülöp F (2015). J Flow Chem 5:210–215CrossRefGoogle Scholar
- 34.Wiles C, Watts P (2014). Green Chem 16:55–62CrossRefGoogle Scholar
- 35.Mandity IM, Olasz B, Otvos SB, Fulop F (2014). Chem Sus Chem 7:3172–3176CrossRefGoogle Scholar
- 36.Simon MD, Heider PL, Adamo A, Vinogradov AA, Mong SK, Li X, Berger T, Policarpo RL, Zhang C, Zou Y, Liao X, Spokoyny AM, Jensen KF, Pentelute BL (2014). Chembiochem 15:713–720CrossRefGoogle Scholar
- 37.Atherton E, Brown E, Sheppard RC, Rosevear A (1981). Chem Commun:1151–1152Google Scholar
- 38.Talla A, Driessen B, Straathof NJW, Milroy LG, Brunsveld L, Hessel V, Noel T (2015). Adv Synth Catal 357:2180–2186CrossRefGoogle Scholar
- 39.Ott D, Borukhova S, Hessel V (2016). Green Chem 18:1096–1116CrossRefGoogle Scholar
- 40.Hessel V (2016). Green Proc Synth 5:111–112Google Scholar
- 41.Gursel IV, Nol T, Wang Q, Hessel V (2015). Green Chem 17:2012–2026CrossRefGoogle Scholar
- 42.Gemoets HPL, Su YH, Shang MJ, Hessel V, Luque R, Noel T (2016). Chem Soc Rev 45:83–117CrossRefGoogle Scholar
- 43.Lukas TJ, Prystowsky MB, Erickson BW (1981). Proc Natl Acad Sci USA 78:2791–2795CrossRefGoogle Scholar
- 44.Dryland, A., Sheppard, R. C J Chem Soc Perkin Trans 1 1986, 125–137Google Scholar
- 45.Atherton E, Holder JL, Meldal M, Scheppard RC, Valerio RM (1988). J Chem Soc Perkin Trans 1:2887–2894CrossRefGoogle Scholar
- 46.Eberle AN, Atherton E, Dryland A, Sheppard RC (1986). J Chem Soc Perkin Trans 1:361–367CrossRefGoogle Scholar
- 47.Collins JM, Porter KA, Singh SK, Vanier GS (2014). Org Lett 16:940–943CrossRefGoogle Scholar
- 48.Chatterjee J, Laufer B, Kessler H (2012). Nature Protoc 7:432–444CrossRefGoogle Scholar
- 49.Bacsa B, Horvati K, Bosze S, Andreae F, Kappe CO (2008). J Org Chem 73:7532–7542CrossRefGoogle Scholar
- 50.Subiros-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009). Chem Eur J 15:9394–9403CrossRefGoogle Scholar
- 51.Malesevic M, Strijowski U, Bachle D, Sewald N (2004). J Biotechnol 112:73–77CrossRefGoogle Scholar
- 52.Sammet B, Bogner T, Nahrwold M, Weiss C, Sewald N (2010). J Org Chem 75:6953–6960CrossRefGoogle Scholar
- 53.Nahrwold M, Bogner T, Eissler S, Verma S, Sewald N (2010). Org Lett 12:1064–1067CrossRefGoogle Scholar
- 54.Eissler S, Stoncius A, Nahrwold M, Sewald N (2006). Synthesis:3747–3789Google Scholar