Esterification of benzoic acid in a continuous flow microwave reactor

  • Ádám Tajti
  • Nóra Tóth
  • Erika Bálint
  • György Keglevich
Article
  • 4 Downloads

Abstract

The direct esterification of benzoic acid with a series of aliphatic alcohols was performed in a continuous flow microwave (MW) reactor. In the first stage, the reactivity of the alcohols towards benzoic acid was mapped in a batch MW reactor. Then, the different esterifications were optimized in the continuous reactor. All parameters including the temperature could be controlled.

Graphical abstract

Keywords

Esterification Benzoic acid Alcohols MW irradiation Batch reactor Continuous flow reactor ᅟ 

Notes

Acknowledgements

The above project was supported by the Hungarian Scientific Research Fund (PD111895), the Hungarian Research Development and Innovation Fund (K119202) and the National Research, Development and Innovation Fund of Hungary in the frame of FIEK_16-1-2016-0007 (Higher Education and Industrial Cooperation Center) project.

References

  1. 1.
    de la Hoz A, Loupy A (2012) Microwaves in organic synthesis, vol 1. 3rd edn. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Kappe CO, Stadler A, Dallinger D (2012) Microwaves in organic and medicinal chemistry 2nd edn. Wiley, WeinheimCrossRefGoogle Scholar
  3. 3.
    Kappe CO, Dallinger D (2006). Nat Rev Drug Discov 5:51–63CrossRefGoogle Scholar
  4. 4.
    Kiss NZ, Bálint E, Keglevich G (2016) Microwave-assisted syntheses in organic chemistry. In: Keglevich G (ed) Milestones in microwave chemistry. Springer, Switzerland, pp 11–45CrossRefGoogle Scholar
  5. 5.
    Bergamelli F, Iannelli M, Marafie JA, Moseley JD (2010). Org Process Res Dev 14:926–930CrossRefGoogle Scholar
  6. 6.
    Bowman MD, Holcomb JL, Kormos CM, Leadbeater NE, Williams VA (2008). Org Process Res Dev 12:41–57CrossRefGoogle Scholar
  7. 7.
    de la Hoz A, Díaz-Ortiz A (2017) Nonconventional techniques in sustainable flow chemistry. In: Vaccaro L (ed) Sustainable flow chemistry: methods and applications. Wiley, Weinheim, pp 219–248Google Scholar
  8. 8.
    Bálint E, Keglevich G (2016) The spread of the application of the microwave technique in organic synthesis. In: Keglevich G (ed) Milestones in microwave chemistry. Springer, Switzerland, pp 1–10Google Scholar
  9. 9.
    Baxendale I, Hayward J, Ley S (2007). Comb Chem High Throughput Screen 10:802–836CrossRefGoogle Scholar
  10. 10.
    Moseley JD (2010) Microwave heating as a tool for process chemistry. In: Leadbeater N (ed) Microwave heating as a tool for sustainable chemistry. CRC press, New York, pp 105–147Google Scholar
  11. 11.
    Keglevich G, Sallay P, Greiner I (2008). Hung Chem J 63:278–283Google Scholar
  12. 12.
    Strauss CR (1999). Aust J Chem 52:83–96CrossRefGoogle Scholar
  13. 13.
    Estel L, Poux M, Benamara N, Polaerta I (2017). Chem Eng Process 113:56–64CrossRefGoogle Scholar
  14. 14.
    Öhrngren P, Fardost A, Russo F, Schanche J-S, Fagrell M, Larhed M (2012). Org Process Res Dev 16:1053–1063CrossRefGoogle Scholar
  15. 15.
    Rydfjord J, Svensson F, Fagrell M, Savmarker J, Thulin M, Larhed M (2013). Beilstein J Org Chem 9:2079–2087CrossRefGoogle Scholar
  16. 16.
    In Patai S (ed) (1969) The chemistry of carboxyl acids and esters. Wiley, ChichesterGoogle Scholar
  17. 17.
    Otera J (1993). Chem Rev 93:1449–1470CrossRefGoogle Scholar
  18. 18.
    In Otera J, Nishikido J (eds) (2010) Esterification: methods, reactions, and applications. Wiley, WeinheimGoogle Scholar
  19. 19.
    Bagley MC, Dwyer JE, Baashen M, Dix MC, Murziani PGS, Rokicki MJ, Kipling D, Davis T (2016). Org Biomol Chem 14:947–956CrossRefGoogle Scholar
  20. 20.
    Bamoharram FF, Heravi MM, Ebrahimi J, Ahmadpour A, Zebarjad M (2011). Chin J Catal 32:782–788CrossRefGoogle Scholar
  21. 21.
    Gedye RN, Smith FE, Westaway KC (1988). Can J Chem 66:17–26CrossRefGoogle Scholar
  22. 22.
    Shi Z-H, Li N-G, Tang Y-P, Shi Q-P, Zhang W, Zhang P-X, Li W, Dong Z-X, Duan J-A (2015). Asian J Chem 27:1351–1354CrossRefGoogle Scholar
  23. 23.
    Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986). Tetrahedron Lett 27:279–282CrossRefGoogle Scholar
  24. 24.
    Pérez ER, Carnevalli NC, Cordeiro PJ, Rodrigues-Filho UP, Franco DW (2011). Org Prep Proced Int 33:395–400CrossRefGoogle Scholar
  25. 25.
    Yang Q, Wang X-J, Li Z-Y, Sun L, You Q-D (2008). Synth Commun 38:4107–4115CrossRefGoogle Scholar
  26. 26.
    Rivero-Buceta E, Carrero P, Doyagüez EG, Madrona A, Quesada E, Camarasa MJ, Peréz-Pérez MJ, Pieter Leyssen P, Paeshuyse J, Balzarini J, Neyts J, San-Félix A (2015). Eur J Med Chem 92:656–671CrossRefGoogle Scholar
  27. 27.
    Shintre SA, Ramjugernath D, Singh P, Mocktar C, Koorbanally NA (2017). Med Chem Res 26:484–498CrossRefGoogle Scholar
  28. 28.
    Samanta S, Lim TL, Lam Y (2013). Chem Med Chem 8:994–1001CrossRefGoogle Scholar
  29. 29.
    Fabian L, Gómez M, Kuran JAC, Moltrasio G, Moglioni A (2014). Synth Commun 44:2386–2392CrossRefGoogle Scholar
  30. 30.
    Shi H, Zhu W, Li H, Liu H, Zhang M, Yan Y, Wang Z (2010). Catal Commun 11:588–591CrossRefGoogle Scholar
  31. 31.
    Chen S-T, Chiou S-H, Wang K-T (1990) J Chem Soc Chem Commun 807–809Google Scholar
  32. 32.
    Cablewski T, Faux AF, Strauss CR (1994). J Org Chem 59:3408–3412CrossRefGoogle Scholar
  33. 33.
    Pipus G, Plazl I, Koloini T (2000). Chem Eng J 76:239–245CrossRefGoogle Scholar
  34. 34.
    Krull M, Moschhaeuser R (2012) Continuous method for producing esters of aromatic carboxylic acids. U.S. Patent 0088918, Apr. 12, 2012Google Scholar
  35. 35.
    Adeyemi A, Bergman J, Branalt J, Savmarker J, Larhed M (2017). Org Process Res Dev 21:947–955CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2018

Authors and Affiliations

  • Ádám Tajti
    • 1
  • Nóra Tóth
    • 1
  • Erika Bálint
    • 1
  • György Keglevich
    • 1
  1. 1.Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations