Skip to main content
Log in

The Clique Number of the Intersection Graph of a Finite Group

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

For a nontrivial finite group G, the intersection graph \(\Gamma (G)\) of G is the simple undirected graph whose vertices are the nontrivial proper subgroups of G and two vertices are joined by an edge if and only if they have a nontrivial intersection. In a finite simple graph \(\Gamma \), the clique number of \(\Gamma \) is denoted by \(\omega (\Gamma )\). In this paper we show that if G is a finite group with \(\omega (\Gamma (G))<13\), then G is solvable. As an application, we characterize all non-solvable groups G with \(\omega (\Gamma (G))=13\). Moreover, we determine all finite groups G with \(\omega (\Gamma (G))\in \{2,3,4\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmadi, H., Taeri, B.: Planarity of the intersection graph of subgroups of a finite groups. J. Algebra Appl. 15(3), 1650040 (2016)

  2. Akbari, S., Tavallayee and Khalashi Ghezelahmad, S.: Intersection graph of submodules of a module. J. Algebra Appl. 1, 1250019 (2012)

  3. Baer, R.: Classes of finite groups and their properties. Illinois J. Math. 1, 115–187 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bary, M.J., Ward, M.B.: Simple groups contain minimal simple groups. Publ. Math. 41, 411–415 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berkovich, Y., Janko, Z.: Groups of Prime Power Order Volume 1, Berlin, New York: De Gruyter Expositions in Mathematics (2008)

  6. Bien, M. H., Viet, D. H.: Intersection graphs of general linear groups. J. Algebra Appl. 20(3), 14 (2021)

  7. Bosak, J.: The graphs of semigroups, in Theory of Graphs and Applications, pp. 119–125. Academic Press, New York (1964)

    MATH  Google Scholar 

  8. Cameron, P.J.: Graphs defined on groups. Int. J. Group Theory 11, 53–107 (2022)

    MathSciNet  MATH  Google Scholar 

  9. Chakrabarty, I., Ghosh, S., Mukherjee, T.K., Sen, M.K.: Intersection graphs of ideals of rings. Discrete Math. 309, 5381–5392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Csákány, B., Pollák, G.: The graph of subgroups of a finite group. Czech. Math. J. 19, 241–247 (1969)

    Article  MathSciNet  Google Scholar 

  11. Freedman, Saul, D.: The intersection graph of a finite simple group has diameter at most 5. Arch. Math. (Basel) 117(1), 1–7 (2021)

  12. Herzog, M., Longobardi, P., Maj, M.: On a graph related to maximal subgroups of a group. Bull. Austral. Math. Soc. 81, 317–328 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huppert, B., Blackburn, N.: Finite groups. Springer-Verlag, Berlin, III (1982)

    Book  MATH  Google Scholar 

  14. Kayacan, S.: Connectivity of intersection graphs of finite groups. Comm. Algebra 46(4), 1492–1505 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moh’d, F., Ahmed, M.: Simple-intersection graphs of rings. AIMS Math. 8(1), 1040–1054 (2023)

    Article  MathSciNet  Google Scholar 

  16. Miraali, B., Mahmood Robati, S.: A solvability criterion for finite groups related to character degrees. Czechoslovak Math. J. 70(145), 1205–1209 (2020)

  17. Pazdeerski, G.: \(\ddot{U}\)br maximale Untergruppen endliicher Gruppen. Math. Nachr 26, 307–319 (1963/1964)

  18. Robinson, D.J.S.: A course in the theory of groups. Springer-Verlag, New York (1996)

    Book  Google Scholar 

  19. Shahsavari, H., Khosravi, B.: On the intersection graph of a finite group. Czech. Math. J. 67(142), 1145–1153 (2017)

  20. Shahsavari, H., Khosravi, B.: Characterization of some families of simple groups by their intersection graphs. Comm. Algebra 48, 1266–1280 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, R.: Intersection graphs of subgroups of finite groups. Czech. Math. J. 60, 945–950 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Su, H., Zhu, L.: Thickness of the subgroup intersection graph of a finite group. AIMS Math. 6(3), 2590–2606 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. The GAP Group, GAP-Groups, Algorithms, and Programming, version 4.4.10, (2007). http://www.gap-system.org

  24. Thompson, J.G.: Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Am. Math. Soc. 74, 383–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zarrin, M.: On noncommuting sets and centralisers in infinite groups. Bull. Aust. Math. Soc. 93(1), 42–46 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zelinka, B.: Intersection graphs of finite abelian groups. Czech. Math. J. 25, 171–174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the referees for their careful reading and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Majid Jafarian Amiri.

Additional information

Communicated by Mohammad Zarrin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshtipour, A., Jafarian Amiri, S.M. The Clique Number of the Intersection Graph of a Finite Group. Bull. Iran. Math. Soc. 49, 74 (2023). https://doi.org/10.1007/s41980-023-00804-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41980-023-00804-5

Keywords

Mathematics Subject Classification

Navigation