Skip to main content
Log in

A Simple Characterization of Useful Topologies in Mathematical Utility Theory

  • Original paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

In this paper, we present a simple axiomatization of useful topologies, i.e., topologies on an arbitrary set, with respect to which every continuous total preorder admits a continuous utility representation. We introduce the concept of weak open and closed countable chain condition (WOCCC) relative to a topology, and we then show that a useful topology always satisfies this condition. The most important result in the paper shows that a completely regular topology is useful if and only if it is separable and it satisfies WFOCCC (a stricter version of WOCCC). In this way, we generalize all the previous results concerning useful topologies. We finish the paper by presenting a simple axiomatization of useful topologies under the well-known Souslin Hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis—A Hitchhiker’s Guide. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Bosi, G., Herden, G.: On the structure of completely useful topologies. Appl. Gen. Topol. 3, 145–167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosi, G., Herden, G.: The structure of useful topologies. J. Math. Econ. 82, 69–73 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bosi, G., Zuanon, M.: Continuity and continuous multi-utility representations of nontotal preorders: some considerations concerning restrictiveness, In: Bosi, G., Campión, M.J., Candeal, J.C., Indur1áin, E. (Eds.) Mathematical Topics on Representations of Ordered Structures and Utility Theory, Book in Honour of G. B. Mehta. Springer, Berlin, pp. 213–236 (2020)

  5. Bosi, G., Zuanon, M.: Topologies for the continuous representability of all continuous total preorders. J. Optim. Theory Appl. 188, 420–431 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouyssou, D., Marchant, T.: An axiomatic approach to noncompensatory sorting methods in MCDM, I: the case of two categories. Eur. J. Oper. Res. 178, 217–245 (2007)

    Article  MATH  Google Scholar 

  7. Bouyssou, D., Marchant, T.: An axiomatic approach to noncompensatory sorting methods in MCDM, II: more than two categories. Eur. J. Oper. Res. 178, 246–276 (2007)

    Article  MATH  Google Scholar 

  8. Campión, M.J., Candeal, J.C., Induráin, E., Mehta, G.B.: Continuous order representability properties of topological spaces and algebraic structures. J. Korean Math. Soc. 49, 449–473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cigler, J., Reichel, H.C.: Topologie. Bibliographisches Institut, Mannheim-Wien-Zürich (1978)

    MATH  Google Scholar 

  10. Debreu, G.: Representation of a preference ordering by a numerical function. In: Thrall, R., Coombs, C., Davies, R. (eds.) Decision Processes. Wiley, New York (1954)

    Google Scholar 

  11. Debreu, G.: Continuity properties of Paretian utility. Int. Econ. Rev. 5, 285–293 (1954)

    Article  MATH  Google Scholar 

  12. Eilenberg, S.: Ordered topological spaces. Am. J. Math. 63, 39–45 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  13. Estévez, M., Hervés, C.: On the existence of continuous preference orderings without utility representation. J. Math. Econ. 24, 305–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Herden, G.: On the existence of utility functions. Math. Soc. Sci. 17, 297–313 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Herden, G.: On the existence of utility functions II. Math. Soc. Sci. 18, 107–11 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Herden, G.: Topological spaces for which every continuous total preorder can be represented by a continuous utility function. Math. Soc. Sci. 22, 123–136 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herden, G., Pallack, A.: Useful topologies and separable systems. Appl. Gen. Topol. 1, 61–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Herden, G., Pallack, A.: On the continuous analogue of the Szpilrajn Theorem I. Math. Soc. Sci. 43, 115–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Soleimani-damaneh, M., Pourkarimi, M., Korhonen, P.J., Wallenius, J.: An operational test for the existence of a consistent increasing quasi-concave value function. Eur. J. Oper. Res. 289, 232–239 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Souslin, M.: Sur un corps dénombrable de nombres réels. Fund. Math. 4, 311–315 (1923)

    Article  MATH  Google Scholar 

  21. Vohra, R.: The Souslin Hypothesis and continuous utility-functions—a remark. Econ. Theory 5, 537–540 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Bosi.

Additional information

Communicated by Majid Soleimani-damaneh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosi, G., Zuanon, M. A Simple Characterization of Useful Topologies in Mathematical Utility Theory. Bull. Iran. Math. Soc. 48, 3321–3333 (2022). https://doi.org/10.1007/s41980-022-00696-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-022-00696-x

Keywords

Mathematics Subject Classification

Navigation