Skip to main content

A Linear Unconditionally Stable Scheme for the Incompressible Cahn–Hilliard–Navier–Stokes Phase-Field Model

Abstract

In this paper, we propose a linear, unconditional energy-stable time-discretization scheme for Cahn–Hilliard–Navier–Stokes model, which is a phase-field model for two-phase incompressible flow. Based on a Lagrange multiplier approach and pressure projection method, our proposed scheme is linearized. Error analyses are carried out under the finite element frame; numerical experiments are done to demonstrate the effectiveness for the proposed scheme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Rayleigh, L.: On the theory of surface forces II. Philos. Magn. 33, 209 (1892)

    Article  Google Scholar 

  2. 2.

    Van Der Waals, J.: The thermodynamic theory of capillarity under the hypothesis of a continuous density variation. J. Stat. Phys. 20, 197–244 (1893)

    Google Scholar 

  3. 3.

    Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order paramater. Math. Models Methods Appl. 6, 815–831 (1996)

    Article  Google Scholar 

  4. 4.

    Anderson, DM., McFadden, GB., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

  5. 5.

    Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 2617–2654 (1998)

  6. 6.

    Jacqmin, D.: Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 155, 96–127 (2007)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral methods. Physica D 179, 211–228 (2003)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface methods for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Shen, J.: Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach. Multiscale modeling and analysis for materials simulation. Lect. Note Ser. IMS NUS 9, 147–195 (2012)

    Google Scholar 

  10. 10.

    Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Zhu, J., Chen, L.Q., Shen, J., Tikare, V.: Morphological evolution during phase separation and coarsening with strong inhomogeneous elaticity. Model. Simul. Mater. Sci. Eng. 9, 499–511 (2001)

    Article  Google Scholar 

  12. 12.

    Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 28, 1169–1691 (2010)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Yang, X.: Error analysis of stabilized semi-implicit method of Allen–Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 11, 1057–1070 (2009)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Ellott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Online Proc. Library Arch. 529, 39–46 (2011)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Shen, J., Yang, X.: Energy stable scheme for Cahn–Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B 31, 743–758 (2010)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Chen, Y., Shen, J.: Efficient, adaptive energy stable schemes for the incompressible Cahn–Hilliard Navier–Stokes phase-field models. J. Comput. Phys. 308, 40–56 (2016)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53, 279–296 (2015)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Han, D., Brylev, A., Yang, X., Tan, Z.: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two-phase incompressible flows. J. Sci. Comput. 70, 965–989 (2016)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Han, D., Yang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Guillen-Gonzalez, F., Tieera, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Cai, Y., Choi, H., Shen, J.: Error estimates for time discretizations of Cahn–Hilliard and Allen–Cahn phase-field models for two-phase incompressible flows. Numer. Math. 137, 417–449 (2017)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Diegel, A.E., Wang, C., Wang, X.M., et al.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Badia, S., Guillen-Gonzalez, F., Gutierrez-Santacreu, J.V.: Finite element approximation of nematic liquid crystal flows using a saddle-point structure. J. Comput. Phys. 230, 1686–1706 (2011)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Guilln-Gonzlez, F., Tierra, G.: Splitting schemes for a Navier–Stokes–Cahn–Hilliard model for two fluids with different densities. J. Comput. Math. 32, 643–664 (2014)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongen Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Nature Foundation of China (No. 11872264), the Provincial Natural Science Foundation of Shanxi (No. 201901D111123), Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (No. 2017119), Key Research and Development (R&D) Projects of Shanxi Province (No. 201903D121038).

Communicated by Davoud Mirzaei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, K. & Jia, H. A Linear Unconditionally Stable Scheme for the Incompressible Cahn–Hilliard–Navier–Stokes Phase-Field Model. Bull. Iran. Math. Soc. (2021). https://doi.org/10.1007/s41980-021-00617-4

Download citation

Keywords

  • Phase-field
  • Two-phase incompressible flow
  • Navier–Stokes
  • Lagrange multiplier approach

Mathematics Subject Classification

  • 35Q30
  • 74S05