Three Solutions for Impulsive Fractional Boundary Value Problems with \({\mathbf {p}}\)-Laplacian

Abstract

The authors give sufficient conditions for the existence of at least three classical solutions to the nonlinear impulsive fractional boundary value problem with a p-Laplacian and Dirichlet conditions

$$\begin{aligned} {\left\{ \begin{array}{ll} D^{\alpha }_{T^-}\varPhi _p(^cD^{\alpha }_{0^+}u(t))+|u(t)|^{p-2}u(t)= \lambda f(t,u(t)), &{}t\ne t_j,\ \ t\in (0,T),\\ \varDelta (D^{\alpha -1}_{T^-}\varPhi _p(^cD^{\alpha }_{0^+}u))(t_j)=I_j(u(t_j)),\\ u(0)=u(T)=0, \end{array}\right. } \end{aligned}$$

where \(\alpha \in (\frac{1}{p}, 1]\) and \(p > 1\). Their approach is based on variational methods. The main result is illustrated with an example.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Afrouzi, G.A., Caristi, G., Barilla, D., Moradi, S.: A variational approach to perturbed three-point boundary value problems of Kirchhoff-type. Complex Var. Elliptic Eqs. 62, 397–412 (2017)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bonanno, G., Candito, P.: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities. J. Differ. Equ. 244, 3031–3059 (2008)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bonanno, G., Candito, P.: Three solutions to a Neumann problem for elliptic equations involving the \(p\)-Laplacian. Archiv der Math. 80, 424–429 (2003)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bonanno, G., D’Aguì, G.: Multiplicity results for a perturbed elliptic Neumann problem. Abstr. Appl. Anal. 2010(Art. ID 564363), 1–10 (2010)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Bonanno, G., Di Bella, B.: A boundary value problem for fourth-order elastic beam equations. J. Math. Anal. Appl. 343, 1166–1176 (2008)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Diethelm, K.: The Analysis of Fractional Differential Equation. Springer, Heidelberg (2010)

    Book  Google Scholar 

  8. 8.

    Faraci, F.: Multiple solutions for two nonlinear problems involving the \(p\)-Laplacian. Nonlinear Anal. TMA 63, e1017–e1029 (2005)

    Article  Google Scholar 

  9. 9.

    Galewski, M., Bisci, G.M.: Existence results for one-dimensional fractional equations. Math. Methods Appl. Sci. 39, 1480–1492 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gao, Z., Yang, L., Liu, G.: Existence and uniqueness of solutions to impulsive fractional integro-differential equations with nonlocal conditions. Appl. Math. 4, 859–863 (2013)

    Article  Google Scholar 

  11. 11.

    Graef, J.R., Heidarkhani, S., Kong, L., Moradi, S.: Existence results for impulsive fractional differential equations with \(p\)-Laplacian via variational methods. Math. Bohemica (to appear)

  12. 12.

    Heidarkhani, S.: Multiple solutions for a nonlinear perturbed fractional boundary value problem. Dyn. Syst. Appl. 23, 317–331 (2014)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Heidarkhani, S., Afrouzi, G.A., Caristi, G., Henderson, J., Moradi, S.: A variational approach to difference equations. J. Differ. Equ. Appl. 22, 1761–1776 (2016)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Heidarkhani, S., Afrouzi, G.A., Ferrara, M., Moradi, S.: Variational approaches to impulsive elastic beam equations of Kirchhoff type. Complex Var. Elliptic Equ. 61, 931–968 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Heidarkhani, S., Cabada, A., Afrouzi, G.A., Moradi, S., Caristi, G.: A variational approach to perturbed impulsive fractional differential equations. J. Comput. Appl. Math. 341, 42–60 (2018)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Heidarkhani, S., Moradi, S.: Existence results for impulsive fractional differential equations with \(p\)-Laplacian via variational methods (preprint)

  17. 17.

    Heidarkhani, S., Salari, A.: Nontrivial solutions for impulsive fractional differential problems through variational methods. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6396

    Article  MATH  Google Scholar 

  18. 18.

    Heidarkhani, S., Zhao, Y., Caristi, G., Afrouzi, G.A., Moradi, S.: Infinitely many solutions for perturbed impulsive fractional differential problems. Appl. Anal. 96, 1401–1424 (2017)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  20. 20.

    Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. Int. J. Bifur. Chaos Appl. Sci. Eng. 22, 1250086 (2012). (17 pages)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  22. 22.

    Kong, L.: Existence of solutions to boundary value problems arising from the fractional advection dispersion equation. Electron. J. Differ. Equ. 2013(106), 1–15 (2013)

    MathSciNet  Google Scholar 

  23. 23.

    Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

  24. 24.

    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  25. 25.

    Wei, L., He, Z.: The applications of sums of ranges of accretive operators to nonlinear equations involving the \(p\)-Laplacian operator. Nonlinear Anal. TMA 24, 185–193 (1995)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Wei, L., Agarwal, R.P.: Existence of solutions to nonlinear Neumann boundary value problems with generalized \(p\)-Laplacian operator. Comput. Math. Appl. 56, 530–541 (2008)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Wang, Y., Liu, Y., Cui, Y.: Infinitely many solutions for impulsive fractional boundary value problem with \(p\)-Laplacian. Bound. Value Probl. 2018, 94 (2018)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Wang, J., Li, X., Wei, W.: On the natural solution of an impulsive fractional differential equation of order \(q \in (1,2)\). Commun. Nonlinear Sci. Numer. Simul. 17, 4384–4394 (2012)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. II. Springer, Berlin (1985)

    Book  Google Scholar 

  30. 30.

    Zhang, H., Li, Z.: Periodic and homoclinic solutions generated by impulses. Nonlinear Anal. RWA 12, 39–51 (2011)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Zhao, Y., Tang, L.: Multiplicity results for impulsive fractional differential equations with \(p\)-Laplacian via variational methods. Bound. Value Probl. 2017, 123 (2017)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John R. Graef.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Majid Gazor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Graef, J.R., Heidarkhani, S., Kong, L. et al. Three Solutions for Impulsive Fractional Boundary Value Problems with \({\mathbf {p}}\)-Laplacian. Bull. Iran. Math. Soc. (2021). https://doi.org/10.1007/s41980-021-00589-5

Download citation

Keywords

  • Fractional p-Laplacian
  • Impulsive effects
  • Three solutions
  • Variational methods

Mathematics Subject Classification

  • 26A33
  • 34B15
  • 34K45