Abstract
In this paper, we give a full classification of pseudo-Riemannian Lie groups of dimension four with non-trivial recurrent curvature tensor (i.e., non-locally symmetric). Then we investigate Ricci solitons on recurrent curvature Lie groups. Locally conformally flat examples of our classification have also been presented.
Similar content being viewed by others
References
Bastami, M., Haji-Badali, A., Zaeim, A.: Recurrent curvature over four-dimensional homogeneous manifolds. RevUMA (2021). https://doi.org/10.33044/revuma.1740
Calvaruso, G., Fino, A.: Four-dimensional pseudo-Riemannian homogeneous Ricci solitons. Int. J. Geom. Methods Mod. Phys. 12(5), 1550056 (2015)
Calvaruso, G., Zaeim, A.: Four-dimensional homogeneous Lorentzian manifolds. Monatsh. Math. 174(3), 377–402 (2013)
Calvaruso, G., Zaeim, A.: Four-dimensional Lorentzian Lie groups. Differ. Geom. Appl. 31(4), 496–509 (2013)
Calvaruso, G., Zaeim, A.: Neutral metrics on four-dimensional Lie groups. J. Lie Theory 25, 1023–1044 (2015)
Chaichi, M., Zaeim, A.: Locally homogeneous four-dimensional manifolds of signature \((2,2)\). Math. Phys. Anal. Geom. 16(3), 345–361 (2013)
Dubey, R.S.D.: Generalized recurrent spaces. Indian J. Pure Appl. Math. 10, 1508–1513 (1979)
García-Río, E., Gilkey, P., Nikčević, S.: Homogeneity of Lorentzian three manifolds with recurrent curvature. Math. Nachr. 287, 32–47 (2014)
Gilkey, P.: Geometric Properties of neutral Operators Defined by the Riemannian curvature tensor. World Scientific Publishing Co. Inc., River Edge (2001)
Haji-Badali, A., Karami, R.: Ricci soliton on four-dimensional neutral Lie group. J. Lie Theory 27, 943–967 (2017)
Haji-Badali, A., Zaeim, A.: Semi-symmetric four dimensional neutral Lie groups. Czech Math. J. 70, 393–410 (2020)
Haji-Badali, A.: Ricci almost soliton on three-dimensional manifolds with recurrent curvature. Mediterr. J. Math. (2017). https://doi.org/10.1007/s00009-016-0810-9
Karami, R., Zaeim, A., Haji-Badali, A.: Ricci solitons and geometry of four dimensional Einstein-like neutral Lie groups. Period Math. Hung. 78, 58–78 (2019)
Komrakov Jr., B.: Einstein–Maxwell equation on four-dimensional homogeneous spaces. Lobachevskii J. Math. 8, 33–165 (2001)
Mantica, C.A., Molinari, L.G.: On conformally recurrent manifolds of dimension greater than 4. Int. J. Geom. Meth. Mod. Phys. 13, 17–26 (2014)
Mathur, S.B.: on recurrent space. Proc. Natl. Inst. Sci. India 34, 40–49 (1966)
Olszak, K., Olszak, Z.: on pseudo-Riemannian manifolds with recurrent concircular curvature tensor. Acta Math. Hung. 137, 64–71 (2012)
Ruse, H.S.: Three-dimensional space of recurrent curvature. Proc. Lond. Math. Soc. S2–50(1), 438–446 (1948)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Mohammad Koushesh.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bastami, M., Zaeim, A. & Haji-Badali, A. On Lie Groups with Recurrent Curvature in Dimension Four. Bull. Iran. Math. Soc. 48, 1037–1049 (2022). https://doi.org/10.1007/s41980-021-00561-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41980-021-00561-3