Skip to main content
Log in

Convergence Analysis for Iterative Learning Control of Conformable Impulsive Differential Equations

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

This paper deals with iterative learning control for conformable impulsive differential equations. For nonlinear and linear problems varying with the initial state, we design standard P-type, \(D_{\gamma }\)-type, and conformable \(PI_{\gamma }D_{\gamma }\)-type learning update laws. Next, we establish sufficient conditions for tracking error convergence and use impulsive Gronwall inequality and mathematical analysis tools to prove the main results. Finally, three numerical examples are given to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  2. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  3. Chung, W.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)

    Article  MathSciNet  Google Scholar 

  4. Abdeljawad, T., Al-Mdallal, Q.M., Jarad, F.: Fractional logistic models in the frame of fractional operators generated by conformable derivatives. Chaos Solitons Fractals 119, 94–101 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bohner, M., Hatipoǧlu, V.F.: Dynamic cobweb models with conformable fractional derivatives. Nonlinear Anal. Hybrid Syst. 32, 157–167 (2019)

    Article  MathSciNet  Google Scholar 

  6. Al-Rifae,M., Abdeljawad,T.: Fundamental results of conformable Sturm–Liouville eigenvalue problems. Complexity 2017, Art. ID 3720471, 1–7 (2017)

  7. Horani, M.A.L., Hammad, M.A., Khalilb, R.: Variation of parameters for local fractional nonhomogenous linear-differential equations. J. Math. Comput. Sci. 16, 147–153 (2016)

    Article  Google Scholar 

  8. Abdeljawad, T., Alzabut, J., Jarad, F.: A generalized Lyapunov-type inequality in the frame of conformable derivatives. Adv. Differ. Equ. 321, 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Pospíšil, M., Pospíšilová Škripková, L.: Sturms theorems for conformable fractional differential equations. Math. Commun. 21, 273–281 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Hammad, M.A., Khalil, R.: Abel’s formula and Wronskian for conformable fractional differential equations. Int. J. Differ. Equ. Appl. 13, 177–183 (2014)

    MATH  Google Scholar 

  11. Zheng, A., Feng, Y., Wang, W.: The Hyers–Ulam stability of the conformable fractional differential equation. Math. Aeterna 5, 485–492 (2015)

    Google Scholar 

  12. Iyiola, O.S., Nwaeze, E.R.: Some new results on the new conformable fractional calculus with application using D’Alambert approach. Progr. Fract. Differ. Appl. 2, 1–7 (2016)

    Article  Google Scholar 

  13. Bayour, B., Torres, D.F.M.: Existence of solution to a local fractional nonlinear differential equation. J. Comput. Appl. Math. 312, 127–133 (2017)

    Article  MathSciNet  Google Scholar 

  14. Tariboon, J., Ntouyas, S.K.: Oscillation of impulsive conformable fractional differential equations. Open Math. 14, 497–508 (2016)

    Article  MathSciNet  Google Scholar 

  15. Li, M., Wang, J., O’Regan, D.: Existence and Ulam’s stability for conformable fractional differential equations with constant coefficients. Bull. Malays. Math. Sci. Soc. 40, 1791–1812 (2019)

    Article  MathSciNet  Google Scholar 

  16. Jaiswal, A., Bahuguna, D.: Semilinear conformable fractional differential equations in Banach spaces. Differ. Equ. Dyn. Syst. 27, 313–325 (2019)

    Article  MathSciNet  Google Scholar 

  17. Pospíšil, M.: Laplace transform, Gronwall inequality and delay differential equations for general conformable fractional derivative. Commun. Math. Anal. 22, 14–33 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Bohner, M., Hatipoǧlu, V.F.: Cobweb model with conformable fractional derivatives. Math. Methods Appl. Sci. 41, 9010–9017 (2018)

    Article  MathSciNet  Google Scholar 

  19. Bayram, M., Atipoǧlu, V.F., Alkan, S., Das, S.E.: A solution method for integro-differential equations of conformable fractional derivative. Therm. Sci. 22, 7–14 (2018)

    Article  Google Scholar 

  20. Qi, Y., Wang, X.: Asymptotical stability analysis of conformable fractional systems. J. Taibah Univ. Sci. 14, 44–49 (2020)

    Article  Google Scholar 

  21. Xiao, G., Wang, J., O’Regan, D.: Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations. Chaos Solitons Fractals 139, 110269 (2020)

    Article  MathSciNet  Google Scholar 

  22. Arqub, O.A., Al-Smadi, M.: Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Comput. 24, 12501–12522 (2020)

    Article  Google Scholar 

  23. Wu, W., Ma, X.: A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries. Sci. Total Environ. 707, 135447.1–135447.24 135447.24 (2020)

    Google Scholar 

  24. Nazir, A., Ahmed, N., Khan, U., Mohyud-Din, S.T., Nisar, K.S., Khan, I.: An advanced version of a conformable mathematical model of Ebola virus disease in Africa. Alex. Eng. J. 59, 3261–3268 (2020)

    Article  Google Scholar 

  25. Qiu, W., Wang, J., O’Regan, D.: Existence and Ulam stability of solutions for conformable impulsive differential equations. Bull. Iran. Math. Soc. 46, 1613–1637 (2020). https://doi.org/10.1007/s41980-019-00347-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Moore, K.L.: Iterative Learning Control for Deterministic Systems. Springer, New York (1993)

    Book  Google Scholar 

  27. Moore, K.L., Dahleh, M., Bhattacharyya, S.P.: Iterative learning control: a survey and new results. J. Robot. Syst. 9, 563–594 (1992)

    Article  Google Scholar 

  28. Meng, D., Jia, Y.: Iterative learning approaches to design finite-time consensus protocols for multi-agent systems. Syst. Control Lett. 61, 187–194 (2012)

    Article  MathSciNet  Google Scholar 

  29. Meng, D., Moore, K.L.: Robust iterative learning control for nonrepetitive uncertain systems. IEEE Trans. Autom. Control 62, 907–913 (2017)

    Article  MathSciNet  Google Scholar 

  30. Li, X., Xu, J., Huang, D.: An iterative learning control approach for linear systems with randomly varying trial lengths. IEEE Trans. Autom. Control 59, 1954–1960 (2014)

    Article  MathSciNet  Google Scholar 

  31. Shen, D., Xu, Y.: Iterative learning control for discrete-time stochastic systems with quantized information. IEEE/CAA J. Autom. Sin. 3, 59–67 (2016)

    Article  MathSciNet  Google Scholar 

  32. Wang, Y., Zhang, H., Wei, S., Zhou, D., Huang, B.: Control performance assessment for ILC-controlled batch processes in a 2-D system framework. IEEE Trans. Syst Man Cybern. Syst. 48, 1493–1504 (2018)

    Article  Google Scholar 

  33. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading of the manuscript and their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

Communicated by Davoud Mirzaei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), Guizhou Data Driven Modeling Learning and Optimization Innovation Team ([2020]5016), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 1/0358/20 and No. 2/0127/20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Fečkan, M., O’Regan, D. et al. Convergence Analysis for Iterative Learning Control of Conformable Impulsive Differential Equations. Bull. Iran. Math. Soc. 48, 193–212 (2022). https://doi.org/10.1007/s41980-020-00510-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-020-00510-6

Keywords

Mathematics Subject Classification

Navigation