## Abstract

Let *R* be a commutative ring with identity and \({\mathbb {N}}_0\) be the additive monoid of nonnegative integers. We say that a function \(t : {\mathbb {N}}_0 \times {\mathbb {N}}_0 \rightarrow R\) is a twist function on *R* if *t* satisfies the following three properties for all \(n, m, q \in {\mathbb {N}}_0\): (i) \(t(0,q) = 1\), (ii) \(t(n,m) = t(m,n)\), and (iii) \(t(n,m) \cdot t(n + m, q) = t (n, m + q) \cdot t(m, q)\). Let \(R[\![X]\!]\) (resp., *R*[*X*]) be the set of power series (resp., polynomials) with coefficients in *R*. For \(f = \sum _{n=0}^{\infty } a_nX^n\) and \(g = \sum _{n=0}^{\infty } b_nX^n \in R[\![X]\!]\), let \(f+g = \sum _{n=0}^{\infty } (a_n+b_n)X^n\), \(f*_tg = \sum _{n=0}^{\infty }(\sum _{i+j = n}t(i,j)a_ib_j)X^n\). Then, \(R^t[\![X]\!]:= (R[\![X]\!], +, *_t)\) and \(R^t[X] := (R[X], +, *_t)\) are commutative rings with identity that contain *R* as a subring. In this paper, we study ring-theoretic properties of \(R^t[\![X]\!]\) and \(R^t[X]\) with focus on divisibility properties including UFDs and GCD-domains. We also show how these two rings are related to the usual power series and polynomial rings.

This is a preview of subscription content, access via your institution.

## References

- 1.
Anderson, D.D., Anderson, D.F., Chang, G.W.: Graded-valuation domains. Commun. Algebra

**45**, 4018–4029 (2017) - 2.
Benhissi, A.: Ideal structure of Hurwitz series rings. Beiträge Algebra Geom.

**48**(1), 251–256 (2007) - 3.
Benhissi, A.: Factorization in Hurwitz series domain. Rend. Circ. Mat. Palermo (2)

**60**(1–2), 69–74 (2011) - 4.
Benhissi, A.: PF and PP-properties in Hurwitz series ring. Bull. Math. Soc. Sci. Math. Roumanie (N.S.)

**54**(3), 203–211 (2011) - 5.
Benhissi, A., Koja, F.: Basic properties of Hurwitz series rings. Ric. Mat.

**61**(2), 255–273 (2012) - 6.
Benhissi, A.: Chain condition on annihilators and strongly Hopfian property in Hurwitz series ring. Algebra Colloq.

**21**(4), 635–646 (2014) - 7.
Chang, G.W., Oh, D.Y.: Divisibility properties of twisted semigroup rings. Commun. Algebra

**48**, 1191–1200 (2020) - 8.
Chang, G.W., Toan, P.T.: Polynomial and power series ring extensions from sequences J. Algebra Appl (to appear)

- 9.
Giau, L.T.N., Toan, P.T.: Krull dimension of Hurwitz polynomial rings over Prüfer domains. Bull. Korean Math. Soc.

**55**(2), 625–631 (2018) - 10.
Ghanem, M.: Some properties of Hurwitz series ring. Int. Math. Forum

**6**(37–40), 1973–1981 (2011) - 11.
Hurwitz, A.: Sur un théorème de M. Hadamard. C. R. Acad. Sci

**128**, 350–353 (1899) - 12.
Toan, P.T., Kang, B.G.: Krull dimension and unique factorization in Hurwitz polynomial rings. Rocky Mt. J. Math.

**47**(4), 1317–1332 (2017) - 13.
Keigher, W.F.: On the ring of Hurwitz series. Commun. Algebra

**25**(6), 1845–1859 (1997) - 14.
Keigher, W.F., Pritchard, F.L.: Hurwitz series as formal functions. J. Pure Appl. Algebra

**146**(3), 291–304 (2000) - 15.
Keigher, W. F., Srinivasan, V. R.: Linear differential equations and Hurwitz series, Algebraic methods in dynamical systems, pp. 205–213, Banach Center Publ., 94, Polish Acad. Sci. Inst. Math., Warsaw (2011)

- 16.
Keigher, W.F., Srinivasan, V.R.: Automorphisms of Hurwitz series. Homol. Homotopy Appl.

**14**(2), 91–99 (2012) - 17.
Liu, Z.: Hermite and PS-rings of Hurwitz series. Commun. Algebra

**28**(1), 299–305 (2000) - 18.
Passman, D.S.: The Algebraic Structure of Group Rings. Wiley, New York (1977)

- 19.
Quesada, A.: Properties of twisted semigroup rings. Univ. of Florida, Thesis (1978)

## Author information

### Affiliations

### Corresponding author

## Additional information

### Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2019.06.

Communicated by Fariborz Azarpanah.

## Rights and permissions

## About this article

### Cite this article

Chang, G.W., Toan, P.T. Twisted Polynomial and Power Series Rings.
*Bull. Iran. Math. Soc.* (2021). https://doi.org/10.1007/s41980-020-00503-5

Received:

Revised:

Accepted:

Published:

### Keywords

- Twisted polynomial
- Twisted power series
- UFD
- GCD-domain

### Mathematics Subject Classification

- 13A05
- 13A15
- 13B25
- 13F25
- 13G05