Reordered Frames and Weavings


For two frames \(\{\phi _i\}_{i \in {\mathcal {I}}}\) and \(\{\psi _i\}_{i\in {\mathcal {I}}}\), the family \(\{\phi _i\}_{i \in \sigma } \cup \{\psi _i\}_{i \in \sigma ^c}\) is called a weaving, where \({\mathcal {I}}\) is a countable index set and \(\sigma \subset {\mathcal {I}}\). Two frames \(\{\phi _i\}_{i \in {\mathcal {I}}}\) and \(\{\psi _i\}_{i\in {\mathcal {I}}}\) are called woven if all their weavings are frames with the same frame bounds. The concept of this manuscript is motivated by an important and interesting problem which is, under what conditions the frames \(\{\phi _i\}_{i \in {\mathcal {I}}}\) and \(\{\phi _{\pi (i)}\}_{i\in {\mathcal {I}}}\) are woven for the separable Hilbert space H, where \(\pi \) is a permutation function on \({\mathcal {I}}\). In this paper, the effect of reordering of the elements of weavings for frames is studied. In particular, full spark frames and m-uniform excess frames are studied. Also, an interesting characterization of reordered weavings by orthogonal projections is given. Finally, the effects of perturbations are considered.

This is a preview of subscription content, access via your institution.


  1. 1.

    Andrade, S.B., Casazza, P.G., Cheng, D., Haas, J., Tran, T.T.: Phase retrieval in \(l_2({\mathbb{R}})\). Q. Phys. Rev. 4(3), 1–17 (2018)

    Google Scholar 

  2. 2.

    Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Deficits and excesses of frames. Adv. Comput. Math. 18, 93–116 (2003)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bemrose, T., Casazza, P.G., Gröchenig, K., Lammers, M.C., Lynch, R.G.: Weaving frames. Oper. Matrices 10(4), 1093–1116 (2016)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bodmann, B.G., Casazza, P.G., Kutyniok, G.: A quantitative notion of redundancy for finite frames. Appl. Comput. Harmon. Anal. 3, 348–362 (2011)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Casazza, P.G., Lynch, R.G.: Weaving properties of Hilbert space frames. In: Proceedings of the SampTA, pp. 110–114 (2015)

  6. 6.

    Casazza, P.G., Kutyniok, G.: Finite Frames, Theory and Applications. Birkhäuser, Boston (2012)

    Google Scholar 

  7. 7.

    Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Birkhäuser, Boston (2015)

    Google Scholar 

  8. 8.

    Christensen, O., Eldar, Y.C.: Oblique dual frames and shift invariant spaces. Appl. Comput. Harmon. Anal. 17, 48–68 (2004)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Chun Hou, J.: A characterization of positive elementary operators. J. Oper. Theory 1, 43–58 (1998)

    MathSciNet  Google Scholar 

  10. 10.

    Daubechies, I.: Ten Lectures on Wavelets. CBMS Series. SIAM, Philadelphia (1992)

    Google Scholar 

  11. 11.

    Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Han, D.G., Kornelson, K., Larson, D., Weber, E.: Frames for Undergraduates (Student Mathematical Library), vol. 40. American Mathematical Society, Providence (2007)

    Google Scholar 

  14. 14.

    Xiao, X., Zhou, G., Zhu, Y.: Uniform excess frames in Hilbert spaces. Results Math. 73, 108–121 (2018)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Young, R.: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Abbas Askarizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. S. Moslehian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Askarizadeh, A., Ahmadi, A. Reordered Frames and Weavings. Bull. Iran. Math. Soc. (2021).

Download citation


  • Full spark frame
  • Permutation function
  • Uniform excess frame
  • Woven frames

Mathematics Subject Classification

  • 42C15
  • 42C40