On Finite Classes of Two-Variable Orthogonal Polynomials

Abstract

The purpose of this paper is to introduce several finite sets of orthogonal polynomials in two variables, and investigate some general properties of them such as recurrence relations, generating functions, differential equations, and Rodrigues type representations.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Aktaş, R.: Representations for parameter derivatives of some Koornwinder polynomials in two variables. J. Egypt. Math. Soc. 24(4), 555–561 (2016)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Aktaş, R.: A note on parameter derivatives of the Jacobi polynomials on the triangle. Appl. Math. Comp. 247, 368–372 (2014)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Aktaş, R., Altın, A., Taşdelen, F.: A note on a family of two-variable polynomials. J. Comput. Appl. Math. 235, 4825–4833 (2011)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 155, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  5. 5.

    Fernández, L., Pérez, T.E., Piñar, M.A.: On Koornwinder classical orthogonal polynomials in two variables. J. Comput. Appl. Math. 236, 3817–3826 (2012)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Fernández, L., Pérez, T.E., Piñar, M.A.: Classical orthogonal polynomials in two variables: a matrix approach. Numer. Algorithms 39, 131–142 (2005)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Koepf, W., Masjed-Jamei, M.: Two classes of special functions using Fourier transforms of some finite classes of classical orthogonal polynomials. Proc. Am. Math. Soc. 135(11), 3599–3606 (2007)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Koornwinder, T.H.: Two-variable analogues of the classical orthogonal polynomials. In: Askey, R. (ed.) Theory and Application of Special Functions, pp. 435–495. Academic Press, New York (1975)

    Google Scholar 

  9. 9.

    Marcellán, F., Marriaga, M., Pérez, T.E., Piñar, M.A.: On bivariate classical orthogonal polynomials. Appl. Math. Comput. 325, 340–357 (2018)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Marcellán, F., Marriaga, M., Pérez, T.E., Piñar, M.A.: Matrix Pearson equations satisfied by Koornwinder weights in two variables. Acta Appl. Math. 153, 81–100 (2018)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Marriaga, M., Pérez, T.E., Piñar, M.A.: Three term relations for a class of bivariate orthogonal polynomials. Mediterr. J. Math. 14(54), 26 (2017)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Masjed-Jamei, M.: Classical orthogonal polynomials with weight function \(\left( \left( ax+b\right) ^{2}+\left( cx+d\right) ^{2}\right) ^{-p}\exp \left( q\arctan \left( \frac{ax+b}{cx+d}\right) \right) \); \(-\infty <x<\infty \) and a generalization of T and F distributions. Integr. Trans. Spec. Funct. 15(2), 137–153 (2004)

    Article  Google Scholar 

  13. 13.

    Masjed-Jamei, M.: Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation. Integr. Trans. Spec. Funct. 13(2), 169–190 (2002)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Masjed-Jamei, M., Soleyman, F., Area, I., Nieto, J.J.: Two finite q-Sturm liouville problems and their orthogonal polynomial solutions. Filomat 32(1), 231–244 (2018)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Milovanovic, G., Öztürk, G., Aktaş, R.: Properties of some of two-variable orthogonal polynomials. Bull. Malays. Math. Sci. Soc. (2019). https://doi.org/10.1007/s40840-019-00750-8

    Article  MATH  Google Scholar 

  16. 16.

    Soleyman, F., Masjed-Jamei, M., Area, I.: A finite class of q-orthogonal polynomials corresponding to inverse gamma distribution. Anal. Math. Phys. 7, 479–492 (2017)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. Halsted Press, New York (1984)

    MATH  Google Scholar 

  18. 18.

    Szegö, G.: Orthogonal Polynomials, American Mathematical Society Colloquium Publications, vol. 23, 4th edn. American Mathematical Society, Providence (1975)

    Google Scholar 

Download references

Acknowledgements

The work of the third author has been supported by the Alexander von Humboldt Foundation under the Grant number: Ref 3.4-IRN-1128637-GF-E.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rabia Aktaş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Davod Khojasteh Salkuyeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Güldoğan, E., Aktaş, R. & Masjed-Jamei, M. On Finite Classes of Two-Variable Orthogonal Polynomials. Bull. Iran. Math. Soc. 46, 1163–1194 (2020). https://doi.org/10.1007/s41980-019-00319-y

Download citation

Keywords

  • Orthogonal polynomial
  • Weight function
  • Differential equation
  • Recurrence relation
  • Generating function

Mathematics Subject Classification

  • 33C45
  • 33C50