Algebraic Dependence for Three Meromorphic Mappings from Complete Kähler Manifolds into Projective Spaces

Abstract

In this paper, we give some sufficient conditions for the algebraic dependence of three meromorphic mappings from Kähler manifold into \({\mathbb {P}}^n({\mathbb {C}})\) sharing hyperplanes in subgeneral position, where all zeros with multiplicities more than certain values do not need to be counted.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Chen, Z., Yan, Q.: A degeneracy theorem for meromorphic mappings with truncated multiplicities. Acta Math. Sci. 31B(2), 549–560 (2011)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Fujimoto, H.: Uniqueness problem with truncated multiplicities in value distribution theory II. Nagoya Math. J. 155, 161–188 (1999)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Fujimoto, H.: Uniqueness problem with truncated multiplicities in value distribution theory. Nagoya Math. J. 152, 131–152 (1998)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Fujimoto, H.: Non-integrated defect relation for meromorphic mappings of complete Kähler manifolds into \({\mathbb{P}}^{N_1}({\mathbb{C}})\times \cdots \times {\mathbb{P}}^{N_k}({\mathbb{C}}),\) Japanese. J. Math. 11, 233–264 (1985)

    Google Scholar 

  5. 5.

    Fujimoto, H.: A unicity theorem for meromorphic mappings of a complete Kähler manifold into \({\mathbb{P}}^N({\mathbb{C}})\). Tohoku Math. J. 38(2), 327–341 (1986)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ji, S.: Uniqueness problem without multiplicities in value distribution theory. Pac. J. Math. 135, 323–348 (1988)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Karp, L.: Subharmonic functions on real and complex manifolds. Math. Z. 179, 535–554 (1982)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Nhung, N.T., Thoan, P.D.: On degeneracy of three meromorphic mappings from complete Kähler manifolds into projective spaces. Comput. Methods Funct. Theory 19, 353–382 (2019)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Nochka, E.I.: On the theory of meromorphic functions. Sov. Math. Dokl. 27, 377–381 (1983)

    MATH  Google Scholar 

  10. 10.

    Noguchi, J.: A note on entire pseudo-holomorphic curves and the proof of Cartan–Nochka’s theorem. Kodai Math. J. 28, 336–346 (2005)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Stoll, W.: On the propagation of dependences. Pac. J. Math. 139, 311–337 (1989)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Quang, S.D.: Degeneracy and finiteness theorems for meromorphic mappings in several complex variables. Chin. Ann. Math. Ser. B 40(2), 251–272 (2019)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Quang, S.D., Quynh, L.N.: Algebraic dependences of meromorphic mappings sharing few hyperplanes counting truncated multiplicities. Kodai Math. J. 38, 97–118 (2015)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Ru, M., Sogome, S.: Non-integrated defect relation for meromorphic mappings of complete Kähler manifold intersecting hypersurface in \({\mathbb{P}}^n({\mathbb{C}})\). Trans. Am. Math. Soc. 364, 1145–1162 (2012)

    Article  Google Scholar 

  15. 15.

    Thai, D.D., Quang, S.D.: Non-integrated defect relation meromorphic mappings of Kähler manifolds into projective varieties. Math. Z. 292(1–2), 211–229 (2019)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Yau, S.T.: Some function-theoretic properties of complete Riemannnian manifolds and their applications to geometry. Indiana Univ. Math. J. 25, 659–670 (1976)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the referee for his/her valuable suggestions and comments which help us improve the results, especially Theorem 1.3. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.04-2017.317 for Pham Duc Thoan and under Grant Number 101.04-2018.01 for Nguyen Thi Nhung.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pham Duc Thoan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Fatemeh Helen Ghane.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thoan, P.D., Nhung, N.T. Algebraic Dependence for Three Meromorphic Mappings from Complete Kähler Manifolds into Projective Spaces. Bull. Iran. Math. Soc. 46, 917–942 (2020). https://doi.org/10.1007/s41980-019-00301-8

Download citation

Keywords

  • Algebraic dependence
  • Meromorphic mapping
  • Complete Kähler manifold
  • Hyperplanes

Mathematics Subject Classification

  • 32H30
  • 32A22
  • 30D35