Skip to main content
Log in

Finite p-Groups Whose Length of Chain of Nonnormal Subgroups is At Most 2

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Assume that G is a finite non-Dedekind p-group, where p is an odd prime. Passman introduced the following concept: we say that \(H_{1}<H_{2}<\cdots <H_{k}\) is a chain of nonnormal subgroups of G if each \(H_{i}\ntrianglelefteq G\) and if \(|H_i:H_{i-1}|=p\) for \(i=2,3,\dots , k\). k is called the length of the chain. \(\mathrm{chn}(G)\) denotes the maximum of the lengths of the chains of nonnormal subgroups of G. In this paper, finite p-groups G with \(\mathrm{chn}(G)\le 2\) are completely classified up to isomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, L.J.: Finite \(p\)-groups whose nonnormal subgroups have few orders. Front. Math. China 13(4), 763–777 (2018)

    Article  MathSciNet  Google Scholar 

  2. An, L.J., Li, L.L., Qu, H.P., Zhang, Q.H.: Finite \(p\)-groups with a minimal nonabelian subgroup of index \(p\) (II). Sci. China Math. 57, 737–753 (2014)

    Article  MathSciNet  Google Scholar 

  3. An, L.J., Zhang, Q.H.: Finite metahamiltonian \(p\)-groups. J. Algebra 442, 23–45 (2015)

    Article  MathSciNet  Google Scholar 

  4. Berkovich, Y.: Groups of Prime Power Order, vol. 1. Walter de Gruyter, Berlin (2008)

    Book  Google Scholar 

  5. Besche, H.U., Eick, B., O’Brien, E.A.: A millennium project: constructing small groups. Int. J. Algebra Comput. 12, 623–644 (2002)

    Article  MathSciNet  Google Scholar 

  6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symbol. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  7. Brandl, R.: Groups with few nonnormal subgroups. Comm. Algebra 23(6), 2091–2098 (1995)

    Article  MathSciNet  Google Scholar 

  8. Brandl, R.: Conjugacy classes of nonnormal subgroups of finite \(p\)-groups. Israel J. Math. 195(1), 473–479 (2013)

    Article  MathSciNet  Google Scholar 

  9. Cappitt, D.: Generalized Dedekind groups. J. Algebra 17, 310–316 (1971)

    Article  MathSciNet  Google Scholar 

  10. Dedekind, R.: \(\ddot{\text{ U }}\)ber Gruppen, deren samtliche Teiler Normalteiler sind. Math. Ann. 48, 548–561 (1897)

    Article  MathSciNet  Google Scholar 

  11. Fernández-Alcober, G.A., Legarreta, L.: The finite \(p\)-groups with \(p\) conjugacy classes of nonnormal subgroups. Israel J. Math. 180(1), 189–192 (2010)

    Article  MathSciNet  Google Scholar 

  12. Foguel, T.: Conjugate-permutable subgroups. J. Algebra 191, 235–239 (1997)

    Article  MathSciNet  Google Scholar 

  13. Gheorghe, P.: On the structure of quasi-Hamiltonian groups. Acad. Repub. Pop. Románe. Bul. Şti. A. 1, 973–979 (1949)

    MathSciNet  Google Scholar 

  14. Kappe, L.-C., Reboli, D.M.: On the structure of generalized Hamilton groups. Arch. Math. (Basel) 75(5), 328–337 (2000)

    Article  MathSciNet  Google Scholar 

  15. Li, L.L., Qu, H.P.: The number of conjugacy classes of nonnormal subgroups of finite \(p\)-groups. J. Algebra 466, 44–62 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, L.L., Qu, H.P., Chen, G.Y.: Central extension of Inner Abelian \(p\)-groups I. Acta Math. Sin Chin. Ser. 53(4), 675–684 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Ormerod, E.A.: Finite \(p\)-group in which every cyclic subgroup is 2-subnormal. Glasg. Math. J. 44, 443–453 (2002)

    Article  MathSciNet  Google Scholar 

  18. Parmeggiani, G.: On finite \(p\)-groups of odd order with many subgroup 2-subnormal. Comm. Algebra 24, 2707–2719 (1996)

    Article  MathSciNet  Google Scholar 

  19. Passman, D.S.: Nonnormal subgroups of \(p\)-groups. J. Algebra 15, 352–370 (1970)

    Article  MathSciNet  Google Scholar 

  20. Qu, H.P.: A Characterization of finite generalized Dedekind groups. Acta Math. Hungar. 143(2), 269–273 (2014)

    Article  MathSciNet  Google Scholar 

  21. Qu, H.P., Xu, M.Y., An, L.J.: Finite \(p\)-groups with a minimal nonabelian subgroup of index \(p\) (III). Sci. China Math. 58, 763–780 (2015)

    Article  MathSciNet  Google Scholar 

  22. R\(\acute{e}\)dei, L.: Das “schiefe Product” in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen geh\(\ddot{o}\)ren, Comment. Math. Helv., 20, 225–264 (1947)

  23. Song, Q.W., Zhang, Q.H.: Finite \(2\)-groups whose length of chain of nonnormal subgroups is at most 2. Front. Math. China 13(5), 1075–1097 (2018)

    Article  MathSciNet  Google Scholar 

  24. Wang, L.F., Qu, H.P.: Finite groups in which the normal closures of nonnormal subgroups have the same order. J. Algebra Appl. 15(6), 1650125 (2016)

    Article  MathSciNet  Google Scholar 

  25. Xu, M.Y., An, L.J., Zhang, Q.H.: Finite \(p\)-groups all of whose nonabelian proper subgroups are generated by two elements. J. Algebra 319(9), 3603–3620 (2008)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J.Q.: Finite groups all of whose nonnormal subgroups possess the same order. J. Algebra Appl. 11(3), 1250053 (2012)

    Article  MathSciNet  Google Scholar 

  27. Zhang, L.H., Zhang, J.Q.: Finite \(p\)-groups all of whose nonnormal abelian subgroups are cyclic. J. Algebra Appl. 12(8), 1350052 (2013)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Q.H., Guo, X.Q., Qu, H.P., Xu, M.Y.: Finite Group which have many normal subgroups. J. Korean Math. Soc. 46(6), 1165–1178 (2009)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Q.H., Su, M.J.: Finite \(2\)-groups whose nonnormal subgroups have orders at most \(2^3\). Front. Math. China 7(5), 971–1003 (2012)

    Article  MathSciNet  Google Scholar 

  30. Zhang, Q.H., Li, X.X., Su, M.J.: Finite \(p\)-groups whose nonnormal subgroups have orders at most \(p^3\). Front. Math. China 9(5), 1169–1194 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Q.H., Song, Q.W., Xu, M.Y.: A classification of some regular \(p\)-groups and its applications. Sci. China Math. 49(3), 366–386 (2006)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Q.H., Zhao, L.B., Li, M.M., Shen, Y.Q.: Finite \(p\)-groups all of whose subgroups of index \(p^3\) are abelian. Commun Math. Stat. 3(1), 69–162 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author cordially thanks the referee for detailed reading and valuable comments. The author thanks Professor Qinhai Zhang for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangwei Song.

Additional information

Communicated by Hamid Mousavi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSFC (Nos. 11901367 and 11771258).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q. Finite p-Groups Whose Length of Chain of Nonnormal Subgroups is At Most 2. Bull. Iran. Math. Soc. 46, 737–754 (2020). https://doi.org/10.1007/s41980-019-00288-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-019-00288-2

Keywords

Mathematics Subject Classification

Navigation