Biderivations and Commutative Post-Lie Algebra Structure on Schrödinger–Virasoro Lie Algebras

  • Ying Li
  • Xiaomin TangEmail author
Original Paper


In this paper, the biderivations of Schrödinger–Virasoro Lie algebras are characterized. It is obtained a class of non-inner and non-skewsymmetric biderivations. As an application, the commutative post-Lie algebra structures on the Schrödinger–Virasoro Lie algebra are presented.


Biderivation Skewsymmetric Schrödinger–Virasoro Lie algebra Post-Lie algebra 

Mathematics Subject Classification

17B05 17B40 17B65 



We are very grateful to the referee for his (or her) valuable suggestions and comments. This work was supported in part by the NNSFC [Grant number 11771069] and the NSF of Heilongjiang Province [Grant number A2015007].


  1. 1.
    Brešar, M.: On generalized biderivations and related maps. J. Algebra 172(3), 764–786 (1995)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Burde, D., Dekimpe, K., Vercammen, K.: Affine actions on Lie groups and post-Lie algebra structures. Linear Algebra Appl. 437(5), 1250–1263 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Burde, D., Moens, W.A.: Commutative post-Lie algebra structures on Lie algebras. J. Algebra 467(1), 183–201 (2016)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chen, Z.: Biderivations and linear commuting maps on simple generalized Witt algebras over a field. Electron. J. Linear Algebra 31(1), 1–12 (2016)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ghosseiri, N.M.: On derivations and biderivations of trivial extensions and triangular matrix rings. Bull. Iran. Math. Soc. 43(6), 1629–1644 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ghosseiri, N.M.: On biderivations of upper triangular matrix rings. Linear Algebra Appl. 438(1), 250–260 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Han, J., Su, Y., Li, J.: Lie bialgebra structures on the Schrödinger–Virasoro Lie algebra. J. Math. Phys. 50(8), 083504 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Han, X., Wang, D., Xia, C.: Linear commuting maps and biderivations on the Lie algebras \(W (a, b)\). J. Lie theory 26(3), 777–786 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Henkel, M.: Schrödinger invariance and strongly anisotropic critical systems. J. Stat. phys. 75(5–6), 1023–1061 (1994)zbMATHGoogle Scholar
  10. 10.
    Liu, X., Guo, X., Zhao, K.: Biderivations of the block Lie algebras. Linear Algebra Appl. 538, 43–55 (2018)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Li, J., Su, Y.: Representations of the Schrödinger–Virasoro algebras. J. Math. Phys. 49(5), 053512 (2008)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Li, J., Su, Y., Zhu, L.: 2-cocycles of original deformative Schrödinger–Virasoro algebras. Sci. China Ser. A 51(11), 1989–1999 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Munthe-Kaas, H.Z., Lundervold, A.: On post-Lie algebras, Lie–Butcher series and moving frames. Found. Comput. Math. 13(4), 583–613 (2013)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Novotný, P., Hrivnák, J.: On \((\alpha,\beta,\gamma )\)-derivations of Lie algebras and corresponding invariant functions. J. Geom. Phys. 58(2), 208–217 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Pan, Y., Liu, Q., Bai, C., Guo, L.: PostLie algebra structures on the lie algebra \(sl(2, \mathbb{C})\). Electron. J. Linear Algebra 23(1), 180–197 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Pei, Y., Bai, C.: Novikov algebras and Schrödinger–Virasoro Lie algebras. J. Phys. A Math. Theor. 44(4), 045201 (2010)zbMATHGoogle Scholar
  17. 17.
    Roger, C., Unterberger, J.: The Schrödinger–Virasoro Lie group and algebra: representation theory and cohomological study [C]. Ann. Henri. Poincaré 7(7–8), 1477–1529 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Tan, S., Zhang, X.: Automorphisms and Verma modules for generalized Schrödinger–Virasoro algebras. J. Algebra 322(4), 1379–1394 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Tang, X.: Biderivations of finite-dimensional complex simple Lie algebras. Linear Multilinear Algebra 66(2), 250–259 (2018)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Tang, X.: Biderivations, linear commuting maps and commutative post-Lie algebra structures on W-algebras. Commun. Algebra 45(12), 5252–5261 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Tang, X., Zhang, Y.: Post-Lie algebra structures on solvable Lie algebra \(t (2,\mathbb{ C})\). Linear Algebra Appl. 462, 59–87 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Unterberger, J.: On vertex algebra representations of the Schrödinger–Virasoro Lie algebra. Nucl. Phys. B 823(3), 320–371 (2009)zbMATHGoogle Scholar
  23. 23.
    Vallette, B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699–725 (2007)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Wang, D., Yu, X.: Biderivations and linear commuting maps on the Schrödinger–Virasoro Lie algebra. Commun. Algebra 41(6), 2166–2173 (2013)zbMATHGoogle Scholar
  25. 25.
    Wang, D., Yu, X., Chen, Z.: Biderivations of the parabolic subalgebras of simple Lie algebras. Commun. Algebra 39(11), 4097–4104 (2011)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Xia, C., Wang, D., Han, X.: Linear super-commuting maps and super-biderivations on the super-Virasoro algebras. Commun. Algebra 44(12), 5342–5350 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zhang, X., Tan, S., Lian, H.: Whittaker modules for the Schrödinger-Witt algebra. J. Math. Phys. 51(8), 083524 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.Mathematical Department of Teacher Education InstituteDaQing Normal UniversityDaqingPeople’s Republic of China
  2. 2.Department of MathematicsHeilongjiang UniversityHarbinPeople’s Republic of China

Personalised recommendations