# Structure on the Simple Canonical Nambu Rota–Baxter 3-Lie Algebra $$A_{\partial }$$

• RuiPu Bai
• Yue Ma
• Chuangchuang Kang
Original Paper

## Abstract

In this paper, we study the structure of simple canonical Nambu 3-Lie algebra $$A_{\partial }=\sum \nolimits _{m\in Z} F z\exp (mx) \oplus \sum \nolimits _{m\in Z}F y\exp (mx)$$. We pay close attention to a special class of Rota–Baxter operators, which are k-order homogeneous Rota–Baxter operators R of weight 1 and weight 0 satisfying $$R(L_m)=f(m+k)L_{m+k}$$, $$R(M_m)=g(m+k)M_{m+k}$$ for all generators $$\{ L_m=z\exp (mx),$$$$M_m= y\exp (-mx)~~| ~~m\in Z\}$$, where $$f, g : A_{\partial } \rightarrow F$$ are functions and $$k\in Z$$. We obtain that R is a k-order homogeneous Rota–Baxter operator on $$A_{\partial }$$ of weight 1 with $$k\ne 0$$ if and only if $$R=0$$, and R is a 0-order homogeneous Rota–Baxter operator on $$A_{\partial }$$ of weight 1 if and only if R is one of the ten possibilities described in Theorems 2.4 and 2.8; R is a k-order homogeneous Rota–Baxter operator on $$A_{\partial }$$ of weight 0 with $$k\ne 0$$ if and only if R satisfies Theorem 3.1; and R is a 0-order homogeneous Rota–Baxter operator on $$A_{\partial }$$ of weight 0 if and only if R is one of the four possibilities described in Theorem 3.3

## Keywords

3-Lie algebra Homogeneous Rota–Baxter operator Canonical Nambu 3-Lie algebra Rota–Baxter 3-algebra

17B05 17D99

## Notes

### Acknowledgements

The first author was supported in part by the Natural Science Foundation (11371245) and the Natural Science Foundation of Hebei Province (A2018201126).

## References

1. 1.
Alexeevsky, D., Guha, P.: On decomposability of Nambu–Poisson tensor. Acta. Math. Univ. Comenian 65, 1–9 (1996)
2. 2.
Bai, C., Guo, L., Ni, X.: Generalizations of the classical Yang–Baxter equation and O-operators. J. Math. Phys. 52, 063515 (2011)
3. 3.
Bagger, J., Lambert, N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D. 77, 065008 (2008)
4. 4.
Bagger, J., Lambert, N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008)
5. 5.
Bai, C., Bellier, O., Guo, L., Ni, X.: Spliting of operations, Manin products and Rota-Baxter operators. IMRN.
6. 6.
Bai, R., Guo, L., Li, J.: Rota–Baxter 3-Lie algebras. J. Math. Phys. 54(6), 063504 (2013)
7. 7.
Bai, R., Li, Z., Wang, W.: Infnite-dimensional 3-Lie algebras and their connections to Harish–Chandra module. Front. Math. Chin. 12(3), 515–530 (2017)
8. 8.
Bai, C., Guo, L., Sheng, Y.: Bialgebras, the classical Yang–Baxter equation and Manin triples for 3-Lie algebras. arXiv:1604.05996 (2016)
9. 9.
Cartier, P.: On the structure of free Baxter algebras. Adv. Math. 9, 253–265 (1972)
10. 10.
Filippov, V.T.: $$n$$-Lie algebras. Sib. Mat. Zh. 26, 126–140 (1985)
11. 11.
Guo, L., Zhang, B.: Renormalization of multiple zeta values. J. Algebra 319, 3770–3809 (2008)
12. 12.
Ho, P., Hou, R., Matsuo, Y.: Lie 3-algebra and multipleM2-branes. JHEP 0806, 020 (2008)
13. 13.
Manchon, D., Paycha, S.: Nested sums of symbols and renormalised multiple zeta values. Int. Math. Res. Pap. 24, 4628–4697 (2010)
14. 14.
Rota, G.C.: Baxter algebras and combinatorial identities I, II. Bull. Am. Math. Soc. 75(325–329), 330–334 (1969)
15. 15.
Rota, G.C.: Baxter Operators, an Introduction. In: Kung, J.P.S. (ed.) Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries. Birkhäuser, Boston (1995)Google Scholar
16. 16.
Takhtajan, L.: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160, 295–315 (1994)