Skip to main content
Log in

Numerical Treatment to a Non-local Parabolic Free Boundary Problem Arising in Financial Bubbles

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

In this paper, we continue to study a non-local free boundary problem arising in financial bubbles. We focus on the parabolic counterpart of the bubble problem and suggest an iterative algorithm which consists of a sequence of parabolic obstacle problems at each step to be solved, that in turn gives the next obstacle function in the iteration. The convergence of the proposed algorithm is proved. Moreover, we consider the finite difference scheme for this algorithm and obtain its convergence. At the end of the paper, we present and discuss computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arakelyan, A.: A finite difference method for two-phase parabolic obstacle-like problem. Armen. J. Math. 7(1), 32–49 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Arakelyan, A.G., Barkhudaryan, R.H., Poghosyan, M.P.: Finite difference scheme for two-phase obstacle problem. Dokl. Nats. Akad. Nauk Armen. 111(3), 224–231 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Arakelyan, A., Barkhudaryan, R., Poghosyan, M.: An error estimate for the finite difference scheme for one-phase obstacle problem. J. Contemp. Math. Anal. 46(3), 131–141 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arakelyan, A., Barkhudaryan, R., Poghosyan, M.: Numerical solution of the two-phase obstacle problem by finite difference method. Armen. J. Math. 7(2), 164–182 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Barkhudaryan, R., Juráš, M., Salehi, M.: Iterative scheme for an elliptic non-local free boundary problem. Appl. Anal. 95(12), 2794–2806 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Monneau, R., Scheinkman, J.A.: A non-local free boundary problem arising in a theory of financial bubbles. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys Eng. Sci. 372(2028), 2013040436 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, vol. 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

    Book  MATH  Google Scholar 

  9. Burger, M., Caffarelli, L., Markowich, P.A.: Partial differential equation models in the socio-economic sciences. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2028), 20130406, 8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L.A.: The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X., Kohn, R.V.: Asset price bubbles from heterogeneous beliefs about mean reversion rates. Financ. Stoch. 15(2), 221–241 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, X., Kohn, R.V.: Erratum to: Asset price bubbles from heterogeneous beliefs about mean reversion rates. Financ. Stoch. 17(1), 225–226 (2013)

    Article  MATH  Google Scholar 

  13. Cheng, X.-L., Xue, L.: On the error estimate of finite difference method for the obstacle problem. Appl. Math. Comput. 183(1), 416–422 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Hu, B., Liang, J., Jiang, L.: Optimal convergence rate of the explicit finite difference scheme for American option valuation. J. Comput. Appl. Math. 230(2), 583–599 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krylov, N.V.: On the rate of convergence of finite-difference approximations for Bellman’s equations. Algebra i Analiz 9(3), 245–256 (1997)

    MathSciNet  Google Scholar 

  16. Petrosyan, A., Shahgholian, H., Uraltseva, N.: Regularity of free Boundaries in Obstacle-Type Problems. Graduate Studies in Mathematics, vol. 136. American Mathematical Society, Providence (2012)

    Book  MATH  Google Scholar 

  17. Scheinkman, J.A., Xiong, W.: Overconfidence and speculative bubbles. J. Political Econ. 111(6), 1183–1220 (2003)

    Article  Google Scholar 

  18. Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

This publication was made possible by NPRP Grant NPRP 5-088-1-021 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafayel Barkhudaryan.

Additional information

Communicated by Asadollah Aghajani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arakelyan, A., Barkhudaryan, R., Shahgholian, H. et al. Numerical Treatment to a Non-local Parabolic Free Boundary Problem Arising in Financial Bubbles. Bull. Iran. Math. Soc. 45, 59–73 (2019). https://doi.org/10.1007/s41980-018-0119-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-018-0119-5

Keywords

Mathematics Subject Classification

Navigation