Skip to main content

Advertisement

Log in

An Integrated Approach to Quantify Changes in NW Indian Himalayan Ice and Snow in Large Spatial Extent

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

Monitoring spatio-temporal changes in glaciers and snow is important for estimating the impact of climate change in glaciated landscapes. The existing methods to map snow, ice, and debris-covered glaciers are complicated and have limitations. We introduce an integrated methodology to map the extent of total snow, isolated ice pockets together with the glaciers at the regional (megascopic) scale. In addition, we examined the sensitivity of the proposed methodology to different scales of mapping and datasets with different spatial resolutions (Landsat 8—30 m and Sentinel 2A—10 m). We implemented the approach in the five major river basins of Northwest India and developed an inventory for all the components of its glaciated area. All these data will help by providing inputs in hydrological models for assessing meltwater generated from the catchment. A change detection analysis in all these five river basins shows a maximum decrease in glacier and ice bodies by around 40% in the Ravi River basin to an overall 3% decrease in glacier and ice bodies in the Beas River basin over the past two and a half decades. The maximum loss in permanent snow cover is also in the Ravi River basin, whereas snow cover in the Yamuna River basin shows a slight increase. We also observed a rise in temperature, a recession of snowlines, and the emergence of glacial lakes in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Hock R, Rasul G, Adler C, Cáceres B, Gruber S, Hirabayashi Y, Jackson M, Kääb A, Kang S, Kutuzov S, Milner UM, Morin S, Orlove B, Steltzer H (2019) High mountain areas. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds) IPCC special report on the ocean and cryosphere in a changing climate. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 131–202. https://doi.org/10.1017/9781009157964.004

    Chapter  Google Scholar 

  2. Gruber S, Hoelzle M, Haeberli W (2004) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31. https://doi.org/10.1029/2004GL020051

  3. Azam MF, Wagnon P, Berthier E, Vincent C, Fujita K, Kargel JS (2018) Review of the status and mass changes of Himalayan-Karakoram glaciers. J Glaciol 64(243):61–74

    Article  Google Scholar 

  4. Bhambri R, Bolch T, Chaujar RK, Kulshreshtha SC (2011) Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. J Glaciol 57(203):543–556

    Article  Google Scholar 

  5. Janke JR, Bellisario AC, Ferrando FA (2015) Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology 241:98–121. https://doi.org/10.1016/j.geomorph.2015.03.034

    Article  Google Scholar 

  6. Kumar V, Singh P, Singh V (2007) Snow and glacier melt contribution in the Beas River at Pandoh Dam, Himachal Pradesh, India. Hydrol Sci J 52:376–388. https://doi.org/10.1623/hysj.52.2.376

    Article  Google Scholar 

  7. Pratap B, Dobhal DP, Mehta M, Bhambri R (2015) Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, central Himalaya, India. Ann Glaciol 56:9–16. https://doi.org/10.3189/2015AoG70A971

    Article  Google Scholar 

  8. Brown RD, Mote PW (2009) The response of Northern Hemisphere snow cover to a changing climate*. J Clim 22:2124–2145. https://doi.org/10.1175/2008JCLI2665.1

    Article  Google Scholar 

  9. Dahe Q, Shiyin L, Peiji L (2006) Snow cover distribution, variability, and response to climate change in Western China. J Clim 19:1820–1833. https://doi.org/10.1175/JCLI3694.1

    Article  Google Scholar 

  10. Immerzeel WW, Van Beek LPH, Konz M, Shrestha AB, Bierkens MFP (2012) Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim Chang 110(3):721–736

    Article  Google Scholar 

  11. You Q, Wu T, Shen L, Pepin N, Zhang L, Jiang Z, Wu Z, Kang S, AghaKouchak A (2020) Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Sci Rev 201:103043. https://doi.org/10.1016/j.earscirev.2019.103043

    Article  Google Scholar 

  12. Racoviteanu AE, Paul F, Raup B, Khalsa SJS, Armstrong R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 global land ice measurements from space (GLIMS) workshop, Boulder, Colorado, USA. Ann Glaciol 50:53–69. https://doi.org/10.3189/172756410790595804

    Article  Google Scholar 

  13. Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4:156–159. https://doi.org/10.1038/ngeo1068

    Article  Google Scholar 

  14. Khan A, Naz BS, Bowling LC (2015) Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002. J Hydrol 521:46–64. https://doi.org/10.1016/j.jhydrol.2014.11.048

    Article  Google Scholar 

  15. Paul F, Huggel C, Kääb A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens Environ 89:510–518. https://doi.org/10.1016/j.rse.2003.11.007

    Article  Google Scholar 

  16. Singh V, Goyal MK (2018) An improved coupled framework for glacier classification: an integration of optical and thermal infrared remote-sensing bands. Taylor and Francis Ltd. https://doi.org/10.1080/01431161.2018.1468104

    Book  Google Scholar 

  17. Garg S, Shukla A, Mehta M, Kumar V, Samuel SA, Bartarya SK, Shukla UK (2018) Field evidences showing rapid frontal degeneration of the Kangriz glacier, western Himalayas, Jammu & Kashmir. J Mt Sci 15:1199–1208. https://doi.org/10.1007/s11629-017-4809-x

    Article  Google Scholar 

  18. Naz BS, Frans CD, Clarke GKC, Burns P, Lettenmaier DP (2014) Modeling the effect of glacier recession on streamflow response using a coupled glacio-hydrological model. Hydrol Earth Syst Sci 18:787–802. https://doi.org/10.5194/hess-18-787-2014

    Article  Google Scholar 

  19. Paul F, Andreassen LM (2009) A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment. J Glaciol 55:607–618. https://doi.org/10.3189/002214309789471003

    Article  Google Scholar 

  20. Zhang Y, Fujita K, Liu S, Liu Q, Nuimura T (2011) Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. J Glaciol 57:1147–1157. https://doi.org/10.3189/002214311798843331

    Article  Google Scholar 

  21. Andreassen LM, Paul F, Kääb A, Hausberg JE (2008) Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere 2:131–145. https://doi.org/10.5194/tc-2-131-2008

    Article  Google Scholar 

  22. Bayr KJ, Hall DK, Kovalick WM (1994) Observations on glaciers in the eastern Austrian Alps using satellite data. Int J Remote Sens 15:1733–1742. https://doi.org/10.1080/01431169408954205

    Article  Google Scholar 

  23. Hall DK, Chang ATC, Siddalingaiah H (1988) Reflectances of glaciers as calculated using Landsat-5 thematic mapper data. Remote Sens Environ 25:311–321. https://doi.org/10.1016/0034-4257(88)90107-1

    Article  Google Scholar 

  24. Hall DK, Ormsby JP, Bindschadler RA, Siddalingaiah H (1987) Characterization of snow and ice reflectance zones on glaciers using Landsat thematic mapper data. Ann Glaciol 9:104–108. https://doi.org/10.3189/S0260305500000471

    Article  Google Scholar 

  25. Jacobs JD, Simms ÉL, Simms A (1997) Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM. J Glaciol 43:98–102. https://doi.org/10.3189/S0022143000002859

    Article  Google Scholar 

  26. Paul F, Kääb A (2005) Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island. Ann Glaciol 42:59–66. https://doi.org/10.3189/172756405781813087

    Article  Google Scholar 

  27. Paul F, Kaab A, Maisch M (2002) The new remote sensing derived Swiss glacier inventory: I. Methods. In: Presented at the 4th international symposium on remote sensing in Glaciology, Maryland. Cambridge University Press

    Google Scholar 

  28. Thakur PK, Garg V, Nikam BR, Aggarwal SP, Aggarwal S, Singh D (2021) Snow, glacier, and glacier lake mapping and monitoring using remote sensing data. In: Taloor AK, Kotlia BS, Kumar K (eds) Water, cryosphere, and climate change in the Himalayas, geography of the physical environment. Springer International Publishing, Cham, pp 57–84. https://doi.org/10.1007/978-3-030-67932-3_4

    Chapter  Google Scholar 

  29. Aniya M, Sato H, Naruse R, Skvarca P, Casassa G (1996) The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America. SN

    Google Scholar 

  30. Bolch T (2005) Glacier mapping in high mountains using DEMs, Landsat and ASTER data. In: Presented at the 8 th International Symposium on High Mountain Remote Sensing Cartography. Karl-Franzens-Universität Graz

    Google Scholar 

  31. Singh DK, Thakur PK, Naithani BP, Kaushik S (2021) Quantifying the sensitivity of band ratio methods for clean glacier ice mapping. Spat Inf Res 29:281–295. https://doi.org/10.1007/s41324-020-00352-8

    Article  Google Scholar 

  32. Svoboda F, Paul F (2009) A new glacier inventory on southern Baffin Island, Canada, from ASTER data: I. Applied methods, challenges and solutions. Ann Glaciol 50:11–21. https://doi.org/10.3189/172756410790595912

    Article  Google Scholar 

  33. Bajracharya SR, Shrestha BR (2011) International Centre for Integrated Mountain Development, Sweden. In: The status of glaciers in the Hindu Kush-Himalayan region. International Centre for Integrated Mountain Development, Kathmandu

    Chapter  Google Scholar 

  34. Kozhikkodan Veettil B, Franz Bremer U, Grondona EB, Florencio De Souza S (2014) Recent changes occurred in the terminus of the debriscovered Bilafond Glacier in the Karakoram Himalayas using remotely sensed images and digital elevation models (1978–2011). J Mt Sci 11:398–406. https://doi.org/10.1007/s11629-013-2677-6

    Article  Google Scholar 

  35. Ranzi R, Grossi G, Iacovelli L, Taschner S (2004) Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS project. IEEE, pp 1144–1147. https://doi.org/10.1109/IGARSS.2004.1368616

    Book  Google Scholar 

  36. Taschner S, Ranzi R (2002) Comparing the opportunities of Landsat-TM and Aster data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project. IEEE, pp 1044–1046. https://doi.org/10.1109/IGARSS.2002.1025770

    Book  Google Scholar 

  37. Lougeay R (1974) Detection of buried glacial and ground ice with thermal infrared remote sensing. Advanced Concepts and Techniques in the Study of Snow and Ice Resources

    Google Scholar 

  38. Alifu H, Tateishi R, Johnson B (2015) A new band ratio technique for mapping debris-covered glaciers using Landsat imagery and a digital elevation model. Int J Remote Sens 36:2063–2075. https://doi.org/10.1080/2150704X.2015.1034886

    Article  Google Scholar 

  39. Holobâcă I-H (2016) Recent retreat of the Elbrus glacier system. J Glaciol 62:94–102. https://doi.org/10.1017/jog.2016.15

    Article  Google Scholar 

  40. Holobâcă I-H, Tielidze LG, Ivan K, Elizbarashvili M, Alexe M, Germain D, Petrescu SH, Pop OT, Gaprindashvili G (2021) Multi-sensor remote sensing to map glacier debris cover in the Greater Caucasus, Georgia. J Glaciol 67:685–696. https://doi.org/10.1017/jog.2021.47

    Article  Google Scholar 

  41. Huang L, Li Z, Tian BS, Han HD, Liu YQ, Zhou JM, Chen Q (2017) Estimation of supraglacial debris thickness using a novel target decomposition on L-band polarimetric SAR images in the Tianshan Mountains: ESTIMATE DEBRIS THICKNESS WITH SAR. J Geophys Res Earth Surf 122:925–940. https://doi.org/10.1002/2016JF004102

    Article  Google Scholar 

  42. Jiang Z, Liu S, Wang X, Lin J, Long S (2011) Applying SAR interferometric coherence to outline debris-covered glacier. In: in: 2011 19th international conference on geoinformatics. Presented at the 2011 19th International Conference on Geoinformatics. IEEE, Shanghai, China, pp 1–4. https://doi.org/10.1109/GeoInformatics.2011.5981184

    Chapter  Google Scholar 

  43. Fugazza D, Scaioni M, Corti M, D’Agata C, Azzoni RS, Cernuschi M, Smiraglia C, Diolaiuti GA (2018) Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards. Nat Hazards Earth Syst Sci 18:1055–1071. https://doi.org/10.5194/nhess-18-1055-2018

    Article  Google Scholar 

  44. Immerzeel WW, Kraaijenbrink PDA, Shea JM, Shrestha AB, Pellicciotti F, Bierkens MFP, de Jong SM (2014) High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens Environ 150:93–103. https://doi.org/10.1016/j.rse.2014.04.025

    Article  Google Scholar 

  45. Kraaijenbrink P, Meijer SW, Shea JM, Pellicciotti F, De Jong SM, Immerzeel WW (2016) Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery. Ann Glaciol 57:103–113. https://doi.org/10.3189/2016AoG71A072

    Article  Google Scholar 

  46. Bishop MP, Shroder JF, Hickman BL (1999) SPOT panchromatic imagery and neural networks for information extraction in a complex mountain environment. Geocarto Int 14:19–28. https://doi.org/10.1080/10106049908542100

    Article  Google Scholar 

  47. Garg PK, Shukla A, Tiwari RK, Jasrotia AS (2017) Assessing the status of glaciers in part of the Chandra basin, Himachal Himalaya: a multiparametric approach. Geomorphology 284:99–114. https://doi.org/10.1016/j.geomorph.2016.10.022

    Article  Google Scholar 

  48. Kaushik S, Joshi PK, Singh T (2019) Development of glacier mapping in Indian Himalaya: a review of approaches. Int J Remote Sens 1–28. https://doi.org/10.1080/01431161.2019.1582114

  49. Fahnestock M, Scambos T, Moon T, Gardner A, Haran T, Klinger M (2016) Rapid large-area mapping of ice flow using Landsat 8. Remote Sens Environ 185:84–94. https://doi.org/10.1016/j.rse.2015.11.023

    Article  Google Scholar 

  50. Millan R, Mouginot J, Rabatel A, Jeong S, Cusicanqui D, Derkacheva A, Chekki M (2019) Mapping surface flow velocity of glaciers at regional scale using a multiple sensors approach. Remote Sens 11:2498. https://doi.org/10.3390/rs11212498

    Article  Google Scholar 

  51. He ZH, Parajka J, Tian FQ, Blöschl G (2014) Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrol Earth Syst Sci 18:4773–4789. https://doi.org/10.5194/hess-18-4773-2014

    Article  Google Scholar 

  52. Schauwecker S, Rohrer M, Huggel C, Kulkarni A, Ramanathan A, Salzmann N, Stoffel M, Brock B (2015) Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya. J Glaciol 61:675–688. https://doi.org/10.3189/2015JoG14J102

    Article  Google Scholar 

  53. Bodo B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res Earth Surf 115. https://doi.org/10.1029/2009JF001426

  54. Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrological Processes: An International Journal 21(12):1534–1547

    Article  Google Scholar 

  55. Wang X, Xie H, Liang T, Huang X (2009) Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in northern Xinjiang, China. Hydrol Process 23:419–429. https://doi.org/10.1002/hyp.7151

    Article  Google Scholar 

  56. Raup B, Racoviteanu A, Khalsa SJS, Helm C, Armstrong R, Arnaud Y (2007) The GLIMS geospatial glacier database: a new tool for studying glacier change. Glob Planet Chang 56:101–110. https://doi.org/10.1016/j.gloplacha.2006.07.018

    Article  Google Scholar 

  57. Kulkarni A, Rathore B, Mahajan S, Mathur P (2005) Alarming retreat of Parbati Glacier, Beas basin, Himachal Pradesh. Curr Sci 88:1844–1850

    Google Scholar 

  58. Winsvold SH, Kaab A, Nuth C (2016) Regional glacier mapping using optical satellite data time series. IEEE J Sel Top Appl Earth Obs Remote Sens 9:3698–3711. https://doi.org/10.1109/JSTARS.2016.2527063

    Article  Google Scholar 

  59. Wang J, Li W (2003) Comparison of methods of snow cover mapping by analysing the solar spectrum of satellite remote sensing data in China. Int J Remote Sens 24:4129–4136. https://doi.org/10.1080/0143116031000070409

    Article  Google Scholar 

  60. Shukla A, Arora MK, Gupta RP (2010) Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens Environ 114:1378–1387. https://doi.org/10.1016/j.rse.2010.01.015

    Article  Google Scholar 

  61. Bishop MP, Shroder JF, Hickman BL, Copland L (1998) Scale-dependent analysis of satellite imagery for characterization of glacier surfaces in the Karakoram Himalaya. Geomorphology 21(3–4):217–232

    Article  Google Scholar 

  62. Bishop MP, Bonk R, Kamp U, Shroder JF (2001) Terrain analysis and data modeling for alpine glacier mapping. Polar Geogr 25(3):182–201

    Article  Google Scholar 

  63. Bolch T, Kamp U (2005) Glacier mapping in high mountains using DEMs, Landsat and ASTER data. In: Proceedings of the 8th International Symposium on high mountain remote sensing cartography. Karl-Franzens-Universität Graz, pp 20–27

    Google Scholar 

  64. Sidjak RW, Wheate RD (1999) Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. Int J Remote Sens 20(2):273–284

    Article  Google Scholar 

  65. Shukla A, Garg PK (2019) Evolution of a debris-covered glacier in the western Himalaya during the last four decades (1971–2016): a multiparametric assessment using remote sensing and field observations. Geomorphology 341:1–14. https://doi.org/10.1016/j.geomorph.2019.05.009

    Article  Google Scholar 

  66. Mimeau L, Esteves M, Zin I, Jacobi H-W, Brun F, Wagnon P, Koirala D, Arnaud Y (2018) Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Nepalese Himalaya). Hydrol Earth Syst Sci Discuss 1–35. https://doi.org/10.5194/hess-2018-34

  67. Maskey S, Uhlenbrook S, Ojha S (2011) An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data. Clim Chang 108:391. https://doi.org/10.1007/s10584-011-0181-y

    Article  Google Scholar 

  68. Tekeli AE, Akyürek Z, Arda Şorman A, Şensoy A, Ünal Şorman A (2005) Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens Environ 97:216–230. https://doi.org/10.1016/j.rse.2005.03.013

    Article  Google Scholar 

  69. Bolch T, Chaujar RK, Bhambri R (2012a) Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Indian Academy of Sciences. https://doi.org/10.5167/uzh-59630

    Book  Google Scholar 

  70. Fujita K, Nuimura T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc Natl Acad Sci 108:14011–14014. https://doi.org/10.1073/pnas.1106242108

    Article  Google Scholar 

  71. Jiang S, Nie Y, Liu Q, Wang J, Liu L, Hassan J, Liu X, Xu X (2018) Glacier change, supraglacial debris expansion and glacial lake evolution in the Gyirong River basin, Central Himalayas, between 1988 and 2015. Remote Sens 10:986. https://doi.org/10.3390/rs10070986

    Article  Google Scholar 

  72. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2:663–667. https://doi.org/10.1038/nclimate1580

    Article  Google Scholar 

  73. Bolch T, Kulkarni A, Kaab A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012b) The state and fate of Himalayan glaciers. Science 336:310–314. https://doi.org/10.1126/science.1215828

    Article  Google Scholar 

  74. Kulkarni AV (2006) In: Kuligowski RJ, Parihar JS, Saito G (eds) Glacial retreat in Himalaya using Indian remote sensing satellite data. SPIE, p 641117. https://doi.org/10.1117/12.694004

    Chapter  Google Scholar 

  75. Kulkarni AV, Dhar S, Rathore BP, Kalia R (2006) Recession of samudra tapu glacier, chandra river basin, Himachal Pradesh. J Indian Soc Remote Sens 34:39–46. https://doi.org/10.1007/BF02990745

    Article  Google Scholar 

  76. Mehta M, Dobhal DP, Bisht MPS (2011) Change of Tipra Glacier in the Garhwal Himalaya, India, between 1962 and 2008. Prog Phys Geogr 35:721–738. https://doi.org/10.1177/0309133311411760

    Article  Google Scholar 

  77. Rabatel A, Dedieu J-P, Vincent C (2005) Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: validation on three French glaciers, 1994–2002. J Glaciol 51:539–546. https://doi.org/10.3189/172756505781829106

    Article  Google Scholar 

  78. Tang Z, Wang X, Deng G, Wang X, Jiang Z, Sang G (2020) Spatiotemporal variation of snowline altitude at the end of melting season across High Mountain Asia, using MODIS snow cover product. Adv Space Res 66(11):2629–2645

    Article  Google Scholar 

  79. Kaur R, Saikumar D, Kulkarni A, Chaudhary BS (2009) Variations in snow cover and snowline altitude in Baspa Basin. Curr Sci 96:1255–1258

    Google Scholar 

  80. Kulkarni AV, Randhawa SS, Rathore BP, Bahuguna IM, Sood RK (2002) Snow and glacier melt runoff model to estimate hydropower potential. J Indian Soc Remote Sens 30:221–228. https://doi.org/10.1007/bf03000365

    Article  Google Scholar 

  81. Shrestha AB, Joshi SP (2009) Snow cover and glacier change study in Nepalese Himalaya using remote sensing and geographic information system. J Hydrol Meteorol 6:26–36. https://doi.org/10.3126/jhm.v6i1.5481

    Article  Google Scholar 

  82. Dutta S, Ramanathan AL, Linda A (2012) Glacier fluctuation using satellite data in Beas basin, 1972–2006, Himachal Pradesh, India. J Earth Syst Sci 121:1105–1112. https://doi.org/10.1007/s12040-012-0219-1

    Article  Google Scholar 

  83. Kumar V, Shukla T, Mehta M, Dobhal DP, Singh Bisht MP, Nautiyal S (2021) Glacier changes and associated climate drivers for the last three decades, Nanda Devi region, Central Himalaya, India. Quat Int 575–576:213–226. https://doi.org/10.1016/j.quaint.2020.06.017

    Article  Google Scholar 

  84. Shukla A, Garg S, Kumar V, Mehta M, Shukla UK (2020) Sensitivity of glaciers in part of the Suru Basin, Western Himalaya to ongoing climatic perturbations. In: Dimri AP, Bookhagen B, Stoffel M, Yasunari T (eds) Himalayan weather and climate and their impact on the environment. Springer International Publishing, Cham, pp 351–377. https://doi.org/10.1007/978-3-030-29684-1_18

    Chapter  Google Scholar 

  85. Basnett S, Kulkarni AV, Bolch T (2013) The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. J Glaciol 59:1035–1046. https://doi.org/10.3189/2013JoG12J184

    Article  Google Scholar 

  86. Nie Y, Liu Q, Liu S (2013) Glacial lake expansion in the Central Himalayas by Landsat images, 1990–2010. PLoS One 8:e83973. https://doi.org/10.1371/journal.pone.0083973

    Article  Google Scholar 

  87. Xin W, Shiyin L, Wanqin G, Xiaojun Y, Zongli J, Yongshun H (2012) Using remote sensing data to quantify changes in glacial lakes in the Chinese Himalaya. Mt Res Dev 32:203–212. https://doi.org/10.1659/MRD-JOURNAL-D-11-00044.1

    Article  Google Scholar 

  88. Mahto SS, Mishra V (2019) Does ERA-5 Outperform other reanalysis products for hydrologic applications in India? J Geophys Res-Atmos 124:9423–9441. https://doi.org/10.1029/2019JD031155

    Article  Google Scholar 

  89. Shah R, Mishra V (2014) Evaluation of the reanalysis products for the monsoon season droughts in India. J Hydrometeorol 15:1575–1591. https://doi.org/10.1175/JHM-D-13-0103.1

    Article  Google Scholar 

Download references

Acknowledgements

This study has been carried out with the support from the Ministry of Education, Government of India. Data availability from the Google Earth Engine, Google Earth, the Global Land Ice Measurements from Space initiative (GLIMS) for their RGI glacier inventory product, European Centre for Medium-Range Weather Forecasts for ERA5 data, Shuttle Radar Topography Mission (SRTM) for their digital elevation model, and National Aeronautics and Space Administration (NASA) for their open access product is greatly appreciated.

Funding

This work was supported by the Ministry of Education, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Pritha Chakravarti. The first draft of the manuscript was written by Pritha Chakravarti and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pritha Chakravarti.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarti, P., Jain, V. & Mishra, V. An Integrated Approach to Quantify Changes in NW Indian Himalayan Ice and Snow in Large Spatial Extent. Remote Sens Earth Syst Sci 6, 188–207 (2023). https://doi.org/10.1007/s41976-023-00092-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-023-00092-x

Keywords

Navigation