Skip to main content

Advertisement

Log in

Recent Variability in the Arctic Ocean and Subarctic Seas

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

The Arctic Ocean and subarctic seas have been undergoing significant changes, particularly evident throughout the past few decades. In this paper, we examine the declining sea ice extent in the Arctic (− 0.0639 million km2 year−1), the increasing sea surface temperature (approximately 0.014 °C year−1 in the Arctic Ocean to 0.03 °C year−1 in the subarctic Atlantic) and sea surface height (2.2 mm year−1 in the Arctic Ocean to 2.4 mm year−1 in the subarctic Atlantic), and changing patterns of sea surface salinity using a variety of reanalysis and observational data products from 1990 to 2017. The Amerasian Basin, particularly the Beaufort Gyre, has been freshening, concurrent with a salinification of the Laptev, Barents, and Greenland Seas, all of which are due to a shift towards a more anticyclonic circulation regime, shift in freshwater storage, and ice melt. Even as this regime began to weaken in the past decade, the freshening in the Beaufort Gyre continued. When comparing these variables to climate indices, we found an important connection between the Arctic Ocean Oscillation (AOO), sea surface height, sea surface temperatures, and ocean heat content in the subarctic Atlantic region, indicating more widespread impacts of atmospheric circulation changes in the Arctic region. These connections show that changes in the cyclonicity of the Arctic Ocean can impact output to the subarctic Atlantic region, which affects the heat and sea level of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337. https://doi.org/10.1038/nature09051

    Article  Google Scholar 

  2. Kwok R (2018) Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958-2018). Environ Res Lett 13. https://doi.org/10.1088/1748-9326/aae3ec

  3. Ricker R, Hendricks S, Ardhuin FG, Kaleschke L, Lique C, Kunze XT, Nicolaus M, Krumpen T (2017) Satellite-observed drop of Arctic sea ice growth in winter 2015-2016. Geophys Res Lett 44:3236–3245. https://doi.org/10.1002/2016GL072244

    Article  Google Scholar 

  4. Stroeve J, Notz D (2018) Changing state of Arctic sea ice across all seasons. Environ Res Lett 13(10). https://doi.org/10.1088/1748-9326/aade56

  5. Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC et al (2017) Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356:285–291. https://doi.org/10.1126/science.aai8204

    Article  Google Scholar 

  6. Timmermans M-L (2015) The impact of stored solar heat on Arctic sea ice growth. Geophys Res Lett 42:6399–6406. https://doi.org/10.1002/2015GL064541

    Article  Google Scholar 

  7. Häkkinen S, Proshutinsky A (2004) Freshwater content variability in the Arctic Ocean. J Geophys Res Oceans 109(C3). https://doi.org/10.1029/2003JC001940

  8. Nagato Y, Tanaka HL (2012) Global warming trend without the contributions from decadal variability of the Arctic Oscillation. Polar Sci 6(1):15–22. https://doi.org/10.1016/j.polar.2012.02.001

  9. Rigor IG, Wallace JM, Colony RL (2002) Response of sea ice to the Arctic Oscillation. J Clim 15:2648–2663. https://doi.org/10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2

    Article  Google Scholar 

  10. Robson J, Sutton RT, Archibald A, Cooper F, Christensen M, Gray LJ, Holliday NP et al (2018) Recent multivariate changes in the North Atlantic climate system, with a focus on 2005-2016. Int J Climatol 38:5050–5076. https://doi.org/10.1002/joc.5815

    Article  Google Scholar 

  11. Kwok R, Rothrock DA (2009) Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008. Geophys Res Lett 36:L15501. https://doi.org/10.1029/2009GL039035

    Article  Google Scholar 

  12. Peterson BJ, McClelland J, Curry R, Holmes RM, Walsh JE, Aagaard K (2006) Trajectory shifts in the Arctic and subarctic freshwater cycle. Science 313(5790):1061–1066. https://doi.org/10.1126/science.1122593

  13. Chylek P, Folland CK, Lesins G, Dubey MK, Wang MY (2009) Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys Res Lett 36:L14801. https://doi.org/10.1029/2009GL038777

    Article  Google Scholar 

  14. Ferster BS, Subrahmanyam B (2018) A comparison of satellite-derived sea surface salinity and salt fluxes in the Southern Ocean. Remote Sens Earth Syst Sci 1:1–13. https://doi.org/10.1007/s41976-018-001-5

  15. Nichols RE, Subrahmanyam B (2019) Estimation of surface freshwater fluxes from the Arctic Ocean using satellite-derived salinity. Remote Sens Earth Syst Sci 2(4):247–259. https://doi.org/10.1007/s41976-019-00027-5

  16. Proshutinsky A, Johnson M (1997) Two circulation regimes of the wind-driven Arctic Ocean. J Geophys Res 102(C6):12493–12514. https://doi.org/10.1029/97JC00738

    Article  Google Scholar 

  17. Proshutinsky A, Dukhovsky D, Timmermans M-L, Krishfield R, Bamber JL (2015) Arctic circulation regimes. Phil Trans R Soc A 373(2052). https://doi.org/10.1098/rsta.2014.0160

  18. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126. https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2

    Article  Google Scholar 

  19. Fetterer, F., Knowles, K., Meier, W.N., Savoie, M., and Windnagel, A.K. (2017, updated daily) Sea Ice Index, Version 3. [North; Monthly; Data]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N5K072F8. [Data Accessed August 12, 2019]

  20. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118(12):6704–6716. https://doi.org/10.1002/2013JC009067

    Article  Google Scholar 

  21. Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat-Theor M 6:813–827. https://doi.org/10.1080/03610927708827533

  22. Huber PJ (1981) Robust statistics. Wiley, New York

    Book  Google Scholar 

  23. Santer BD, Wigley TML, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D, Parker DE, Taylor KE (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105(D6):7337–7356. https://doi.org/10.1029/1/999JD901105

    Article  Google Scholar 

  24. Proshutinsky A, Krishfield R, Timmermans M-L, Toole J, Carmack E, McLaughlin F et al (2009) Beaufort Gyre freshwater reservoir: state and variability from observations. J Geophys Res 114(C00A10). https://doi.org/10.1029/2008JC005104

  25. Gawarkiewicz GG, Todd RE, Plueddemann AJ, Andres M, Manning JP (2012) Direct interaction between the Gulf Stream and the shelfbreak south of New England. Sci Rep 2:553. https://doi.org/10.1038/srep00553

    Article  Google Scholar 

  26. Giles KA, Laxon SW, Ridout AL, Wingham DJ, Bacon S (2012) Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat Geosci 5:194. https://doi.org/10.1038/NGEO1379

    Article  Google Scholar 

  27. Rose SK, Andersen OB, Passaro M, Ludwigsen CA, Schwatke C (2019) Arctic Ocean sea level record from the complete radar altimetry era: 1991–2018. Remote Sens 11(14):1672. https://doi.org/10.3390/rs11141672

    Article  Google Scholar 

  28. Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310(5747):456–460. https://doi.org/10.1126/science.1114613

  29. Wigley TML, Raper SCB (1987) Thermal expansion of sea water associated with global warming. Nature 330:127–131. https://doi.org/10.1038/330127a0

    Article  Google Scholar 

  30. Lind S, Ingvaldsen RB (2012) Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep-Sea Res I 62:70–88. https://doi.org/10.1016/j.dsr.2011.12.007

  31. Aagaard K, Carmack EC (1989) The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res 94(C10):14485–14498. https://doi.org/10.1029/JC094iC10p14485

    Article  Google Scholar 

  32. Aagaard K, Woodgate RA (2001) Some thoughts on the freezing and melting of sea ice and their effects on the ocean. Ocean Model 3(1–2):127–135. https://doi.org/10.1016/S1463-5003(01)00005-1

    Article  Google Scholar 

  33. Morison J, Kwok R, Peralta-Ferriz C, Alkire M, Rigor I, Anderson R, Steele M (2012) Changing Arctic Ocean freshwater pathways. Nature 481:66–70. https://doi.org/10.1038/nature10705

    Article  Google Scholar 

  34. Wang Q, Wekerle C, Danilov S, Sidorenko D, Koldunov N, Sein D, Rabe B, Jung T (2019) Recent sea ice decline did not significantly increase the total liquid freshwater content of the Arctic Ocean. J Clim 32:15–32. https://doi.org/10.1175/JCLI-D-18-0237.1

    Article  Google Scholar 

  35. Wang Q, Wekerle C, Danilov S, Koldunov N, Sidorenko D, Sein D, Rabe B, Jung T (2018) Arctic sea ice decline significantly contributed to the unprecedented liquid freshwater accumulation in the Beaufort Gyre of the Arctic Ocean. Geophys Res Lett 45(10):4956–4964. https://doi.org/10.1029/2018GL077901

    Article  Google Scholar 

  36. Woodgate RA, Weingartner TJ, Lindsay R (2012) Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophys Res Lett 39:L24603. https://doi.org/10.1029/2012GL054092

    Article  Google Scholar 

  37. Aagaard K, Coachman LK, Carmack E (1981) On the halocline of the Arctic Ocean. Deep-Sea Res 28A(6):529–545. https://doi.org/10.1016/0198-0149(81)90115-1

  38. Proshutinsky A, Bourke RH, McLaughlin FA (2002) The role of the Beaufort Gyre in Arctic climate variability: seasonal to decadal climate scales. Geophys Res Lett 29(23):2100. https://doi.org/10.1029/2002GL015847

    Article  Google Scholar 

  39. Royer TC, Grosch CE (2006) Ocean warming and freshening in the northern Gulf of Alaska. Geophys Res Lett 33(16). https://doi.org/10.1029/2006GL026767

  40. Tully JP, Barber FG (1960) An estuarine analogy in the sub-arctic Pacific Ocean. J Fish Res Board Can 17(1):91–112. https://doi.org/10.1139/f60-007

    Article  Google Scholar 

  41. Rabe B, Karcher M, Kauker F, Schauer U, Toole JM, Krishfield RA, Pisarev S, Kikuchi T, Su J (2014) Arctic Ocean basin liquid freshwater storage trend 1992-2012. Geophys Res Lett 41(3):961–968. https://doi.org/10.1002/2013GL058121

    Article  Google Scholar 

  42. Haine TWN, Curry B, Gerdes R, Hansen E, Karcher M, Lee C, Rudels B et al (2015) Arctic freshwater export: status, mechanisms, and prospects. Glob Planet Chang 125:13–35. https://doi.org/10.1016/j.gloplacha.2014.11.013

    Article  Google Scholar 

  43. Rabe B, Karcher M, Schauer U, Toole JM, Krishfield RA, Pisarev S, Kauker F, Gerges R et al (2011) An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006-2008 period. Deep-Sea Res I 58(2):173–185. https://doi.org/10.1016/j.dsr.2010.12.002

  44. McPhee MG, Proshutinsky A, Morison JH, Steele M, Alkire MB (2009) Rapid change in freshwater content of the Arctic Ocean. Geophys Res Lett 36:L10602. https://doi.org/10.1029/2009GL037525

    Article  Google Scholar 

  45. Manucharyan GE, Thompson AF, Spall MA (2017) Eddy memory mode of multidecadal variability in residual-mean ocean circulations with application to the Beaufort Gyre. J Phys Oceanogr 47:855–866. https://doi.org/10.1175/JPO-D-16-0194.1

    Article  Google Scholar 

  46. Årthun M, Eldevik T, Smedsrud LH, Skagseth Ø, Ingvaldsen RB (2012) Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J Clim 25:4736–4743. https://doi.org/10.1175/JCLI-D-11-00466.1

    Article  Google Scholar 

Download references

Acknowledgments

CMEMS sea surface height is obtained from Copernicus (http://marine.copernicus.eu/services-portfolio/access-to-products/). EN 4.2.1 produced by the UK Met Office (https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.html). Sea ice extent produced by NOAA/NSIDC (ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02202_V3/north/monthly/). The NAO index is provided by NOAA’s CPC (https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/norm.nao.monthly.b5001.current.ascii). The AOO index is provided by WHOI’s Beaufort Gyre Exploration Project (https://www.whoi.edu/page.do?pid=66578). We are thankful for the helpful comments of the editor and anonymous reviewers, which improved the quality of this paper.

Availability of Data and Material

CMEMS sea surface height is obtained from Copernicus (http://marine.copernicus.eu/services-portfolio/access-to-products/). EN 4.2.1 produced by the UK Met Office (https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-1.html). Sea ice extent produced by NOAA/NSIDC (ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02202_V3/north/monthly/).

Code Availability

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel E. Nichols.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichols, R.E., Subrahmanyam, B. & Arguez, A. Recent Variability in the Arctic Ocean and Subarctic Seas. Remote Sens Earth Syst Sci 3, 44–54 (2020). https://doi.org/10.1007/s41976-020-00035-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-020-00035-w

Keywords

Navigation