Skip to main content

Advertisement

Log in

Estimation of Net Radiation Flux of Antarctic Ice Sheet in East Dronning Maud Land, Antarctica, During Clear Sky Days Using Remote Sensing and Meteorological Data

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

In the present paper, incoming shortwave radiation flux, net shortwave radiation flux, net longwave radiation flux, and net radiation flux have been estimated at 1-km spatial scale for the ice sheet in East Dronning Maud Land, Antarctica. Terra-MODIS (Moderate Resolution Imaging Spectroradiometer) products (i.e., land and atmospheric data products) have been used to estimate net radiation flux during few clear sky days of the years 2007, 2008, 2009, and 2010. Estimated surface energy fluxes using MODIS products have been evaluated using in situ recorded values of energy fluxes. In situ data of the surface energy fluxes and meteorological parameters have been collected using automatic weather stations (AWS) on ice sheet at two locations near the Indian Research Station “Maitri.” Net radiation flux has been estimated for the study area from net shortwave radiation flux and net longwave radiation flux maps. Bias, correlation, and root mean square error (RMSE) between AWS-recorded and MODIS-derived radiation fluxes have been observed as − 23 W m−2, 0.91 and 61 W m−2 for net shortwave radiation flux and − 21.3 W m−2, 0.93 and 64 W m−2 for net radiation flux, respectively. The study highlights the validation of some of the MODIS products and MODIS-derived energy fluxes in Antarctica. Spatial and temporal variations of radiative energy fluxes have also been investigated in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bintanja R, Reijmer CH (2001) Meteorological conditions over Antarctic blue-ice areas and their influence on the local surface mass balance. J Glaciol 17:37–50

    Article  Google Scholar 

  2. Bintanja R, van den Broeke MR (1994) Local climate, circulation and surface-energy balance of an Antarctic blue-ice area. Ann Glaciol 20:160–168

    Article  Google Scholar 

  3. Bintanja R, van den Broeke MR (1995) The surface energy balance of Antarctic snow and blue ice. J Appl Meteorol 34:902–926

    Article  Google Scholar 

  4. Bintanja R (1999) On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev Geophys 37:337–359

    Article  Google Scholar 

  5. Bliss AK, Cuffey KM, Kavanaugh JL (2011) Sublimation and surface energy budget of Taylor Glacier, Antarctica. J Glaciol 57:684–696

    Article  Google Scholar 

  6. Fountain AG, Nylen TH, MacClune KL, Dana GL (2006) Glacier mass balances (1993–2001), Taylor Valley, McMurdo Dry Valleys, Antarctica. J Glaciol 52:451–462

    Article  Google Scholar 

  7. Genthon C, Lardeux P, Krinner G (2007) The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Terre Adelie, Antarctica. J Glaciol 53:635–645

    Article  Google Scholar 

  8. Gusain HS, Mishra VD, Arora MK (2014a) A four-year record of the meteorological parameters, radiative and turbulent energy fluxes at the edge of the East Antarctic ice sheet, close to Schirmacher Oasis. Antarct Sci 26(1):93–103

    Article  Google Scholar 

  9. Hoffman MJ, Fountain AG, Liston GE (2008) Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica. J Geophys Res 113:1–12. https://doi.org/10.1029/2008JF001029

    Article  Google Scholar 

  10. Kuipers Munneke P, van den Broeke MR, King JC, Gray T, Reijmer CH (2012) Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula. Cryosphere 6:353–363

    Article  Google Scholar 

  11. Lewis KJ, Fountain AG, Dana GL (1998) Surface energy balance and melt water production for a Dry Valley glacier, Taylor Valley, Antarctica. Ann Glaciol 27:603–609

    Article  Google Scholar 

  12. Schneider C (1999) Energy balance estimates during the summer season of glaciers of the Antarctic Peninsula. Glob Planet Chang 22:117–130

    Article  Google Scholar 

  13. van den Broeke M, Reijmer C, van As D, Boot W (2006) Daily cycle of the surface energy balance in Antarctica and the influence of clouds. Int J Climatol 26:1587–1605

    Article  Google Scholar 

  14. Ohmura A (1982) Climate and energy balance on the arctic tundra. J Climatol 2(1):65–84

    Article  Google Scholar 

  15. Lindsay RW (1998) Temporal variability of the energy balance of thick Arctic pack ice. J Clim 11:313–333

    Article  Google Scholar 

  16. Lynch AH, Chapin FS, Hinzman LD, Wu W, Lilly E, Vourlitis G, Kim E (1999) Surface energy balance on the arctic tundra : measurements and models. J Clim 12:2585–2606

    Article  Google Scholar 

  17. Azam MF, Wagnon P, Vincent C, Ramanathan AL, Mandal A, Pottakkal JG (2014) Processes governing the mass balance of Chhota Shigri Glacier (Western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere 8:2195–2217

    Article  Google Scholar 

  18. Brock BW, Willis IC, Sharp MJ (2006) Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland. J Glaciol 52:281–297

    Article  Google Scholar 

  19. Giesen RH, van den Broeke MR, Oerlemans J, Andreassen LM (2008) Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway : interannual variability and the effect of clouds. J Geophys Res 113, D21111:1–17. https://doi.org/10.1029/2008JD010390

    Article  Google Scholar 

  20. Klok EJ, Nolan M, van den Broeke MR (2005) Analysis of meteorological data and the surface energy balance of McCall Glacier, Alaska, USA. J Glaciol 51(174):451–461

    Article  Google Scholar 

  21. Sicart JE, Hock R, Six D (2008) Glacier melt, air temperature and energy balance in different climates: the Bolivian Tropics, the French Alps, and northern Sweden. J Geophys Res 113, D24113:1–11. https://doi.org/10.1029/2008JD010406

    Article  Google Scholar 

  22. Wagnon P, Sicart JE, Berthier E, Chazarin JP (2003) Wintertime high-altitude surface energy balance of a Bolivian glacier, Illimani, 6340 m above sea level. J Geophys Res 108, D6:1–14. https://doi.org/10.1029/2002JD002088

    Article  Google Scholar 

  23. Bisht G, Bras RL (2010b) Estimation of net radiation from the Moderate Resolution Imaging Spectroradiometer over the continental United States. IEEE Trans Geosci Remote Sens 49(6):2448–2462

    Article  Google Scholar 

  24. Bisht G, Bras RL (2010a) Estimation of the net radiation from MODIS data under all sky conditions: Southern Great Plains case study. Remote Sens Environ 114:1522–1534

    Article  Google Scholar 

  25. Bisht G, Venturini V, Islam S, Jiang L (2005) Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sens Environ 97:52–67

    Article  Google Scholar 

  26. Hetrick WA, Rich PM, Barnes FJ, Weiss SB (1993) GIS-based solar radiation flux models, American Society of Photogrammetry and Remote Sensing Technical papers (GIS Photogrammetry and Modeling) 3:132–143

  27. Jiang L, Islam S (2010) An intercomparison of regional latent heat flux estimation using remote sensing data. Int J Remote Sens 24:2221–2236

    Article  Google Scholar 

  28. Journée M, Bertrand C (2010) Improving the spatio-temporal distribution of surface solar radiation data by merging ground and satellite measurements. Remote Sens Environ 114:2692–2704

    Article  Google Scholar 

  29. Oliphant A, Susan C, Grimmond B, Schmid HP, Wayson CA (2006) Local-scale heterogeneity of photosynthetically active radiation (PAR), absorbed PAR and net radiation as a function of topography, sky conditions and leaf area index. Remote Sens Environ 103:324–337

    Article  Google Scholar 

  30. Samani Z, Bawazir AS, Bleiweiss M, Skaggs R, Tran VD (2007) Estimating daily net radiation over vegetation canopy through remote sensing and climatic data. J Irrig Drain Eng 133:291–297

    Article  Google Scholar 

  31. Wang W, Liang S (2009) Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data. Remote Sens Environ 113:745–754

    Article  Google Scholar 

  32. Gusain HS, Mishra VD, Arora MK (2014b) Estimation of net shortwave radiation flux of western Himalayan snow cover during clear sky days using remote sensing and meteorological data. Remote Sens Lett 5(1):83–92

    Article  Google Scholar 

  33. Niu X, Pinker RT, Cronin MF (2010) Radiative fluxes at high latitude. Geophys Res Lett 37(L20811):1–5

    Google Scholar 

  34. Wang H, Pinker RT (2009) Shortwave radiative fluxes from MODIS: model development and implementation. J Geophys Res 114, D20201:1–17. https://doi.org/10.1029/2008JD010442

    Google Scholar 

  35. King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge University Press, Cambridge, p 409

    Book  Google Scholar 

  36. Tyagi A, Singh UP, Mohapatra M (2011) Weather & weather systems at Schirmacher Oasis (Maitri) during recent two decades – a review. MAUSAM 62:513–534

    Google Scholar 

  37. van den Broeke M, Reijmer C, van de Wal R (2004) Surface radiation balance in Antarctica as measured with automatic weather stations. J Geophys Res. https://doi.org/10.1029/2003JD004394

  38. Zhou M, Zhang Z, Zhong S, Lenschow D, Hsu HM, Sun B, Gao Z, Li S, Bian X, Yu L (2009) Observations of near-surface wind and temperature structures and their variations with topography and latitude in East Antarctica. J Geophys Res. https://doi.org/10.1029/2008JD011611

  39. Salomonson VV, Barnes WL, Maymon PW, Montgomery HE, Ostrow H (1989) MODIS: advanced facility instrument for studies of the earth as a system. IEEE Trans Geosci Remote Sens 27:145–153

    Article  Google Scholar 

  40. Menzel WP, Seemann SW, Li J, Gumley LE (2002) MODIS atmospheric profile retrieval algorithm theoretical basis document,Version 6, Reference Number: ATBD-MOD-07. http://modis.gsfc.nasa.gov/data/atbd/atbd_mod07.pdf. Accessed on 12/04/2003

  41. Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T et al (2003) First operational BRDF, albedo nadir reflectance product from MODIS. Remote Sens Environ 83:135–148

    Article  Google Scholar 

  42. Stroeve J, Box J, Gao F, Liang S, Nolin A, Schaaf C (2005) Accuracy assessment of the MODIS 16-day snow albedo product: comparisons with Greenland in situ measurements. Remote Sens Environ 94:46–60

    Article  Google Scholar 

  43. Liang S, Strahler AH, Walthall CW (1999) Retrieval of land surface albedo from satellite observations: a simulation study. J Appl Meteorol 38:712–725

    Article  Google Scholar 

  44. Zillman JW (1972) A study of some aspects of the radiation and heat budgets of the Southern Hemisphere oceans, Meteorological study, vol 26. Commonwealth Bureau of Meteorology, Canberra, Australia, p 562

    Google Scholar 

  45. Niemelä S, Räisänen P, Savijärvi H (2001) Comparison of surface radiative flux parameterizations part II. Shortwave radiation. Atmos Res 58:141–154

    Article  Google Scholar 

  46. Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20:1527–1532

    Article  Google Scholar 

  47. Gates DM (1980) Biophysical ecology. Springer, New York

    Book  Google Scholar 

  48. Stroevea JC, Box JE, Haran T (2006) Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sens Environ 105:155–171

    Article  Google Scholar 

  49. Prata AJ (1996) A new longwave formula for estimating downward clear-sky radiation at the surface. Q J R Meteorol Soc 122:1127–1151

    Article  Google Scholar 

  50. Gusain HS, Mishra VD, Brar GS, Ganju A (2015) A simple model for estimation of snow/ice surface temperature of Antarctic ice sheet using remotely sensed thermal band data. Indian Journal of Radio & Space Physics 44:51–55

    Google Scholar 

  51. Wan Z (1999) MODIS land-surface temperature algorithm theoretical basis document (LST ATBD), version 3.3. Institute for Computational Earth System Science, University of California, Santa Barbara, pp 1–77

    Google Scholar 

  52. Qin Z, Karnieli A (1999) Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data. Int J Remote Sens 20:2367–2393

    Article  Google Scholar 

  53. Gusain HS, Singh KK, Mishra VD, Srivastava PK, Ganju A (2009) Study of surface energy and mass balance at the edge of the Antarctic ice sheet during summer in Dronning Maudland, East Antarctica. Antarct Sci 21(4):401–409

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the anonymous reviewers for improving the quality of the manuscript. We would like to thank all the scientists/technical officers/technical staff of Snow and Avalanche Study Establishment (SASE), who collected valuable data for the study in Antarctica. Logistic support provided by National Centre of Antarctic and Ocean Research (NCAOR), Goa, is duly acknowledged. NASA’s LAADS web (http://ladsweb.nascom.nasa.gov) and https://modis.gsfc.nasa.gov/data/dataprod/ is duly acknowledged for providing MODIS data, MODIS data products, and SRTM DEM. LIMA USGS website is duly acknowledged for providing Antarctica Landsat Mosaic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Gusain.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusain, H.S., Singh, D.K., Mishra, V.D. et al. Estimation of Net Radiation Flux of Antarctic Ice Sheet in East Dronning Maud Land, Antarctica, During Clear Sky Days Using Remote Sensing and Meteorological Data. Remote Sens Earth Syst Sci 1, 89–99 (2018). https://doi.org/10.1007/s41976-019-0009-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-019-0009-5

Keywords

Navigation