Skip to main content

Advertisement

Log in

Applicability of Developed Algorithm for Semi-automated Extraction and Morphotectonic Interpretation of Lineaments Using Remotely Sensed Data, Southwestern Tunisia

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

In this study, we performed semi-automatic extraction of lineaments using satellite imagery of Landsat-8 OLI (Operational Land Imager) and digital elevation model of SRTM (Shuttle Radar Topography Mission). The developed algorithm used for this purpose combines STA (Segment Tracing Algorithm), ALEGHT (Automatic Lineament Extraction by Generalized Hough Transform) and AERA (Alluvial Effect Reducing Algorithm) to achieve maximum precision in the output results. To evaluate the spatial distribution of lineaments, we performed multicriteria statistical analysis and mapping of the density and length. This methodology was applied to Segui region located in the southwestern part of Tunisia. It is characterized by folds made up by carbonate formations. The statistical analysis shows emergence of two major general lineament trends that represent extrados faults and has the same direction of folds axis. Density measurements of the spatial lineaments distribution indicate a high density in the centre of structures. High density is also observed along fold hinges and structural gaps. Measurements of lineaments lengths show that directional families with the same fold axis are the longest. The proposed approach is useful in other similar case studies for the morphotectonic and lineament interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adiri Z, El Harti A, Jellouli A, Lhissou R, Maacha L, Azmi M, Zouhair M, Bachaoui EM (2017) Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: a case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Adv Space Res 60(11):2355–2367

    Article  Google Scholar 

  2. Ahmadi R (2006) Utilisation des marqueurs morphologiques, sédimentologiques et microstructuraux pour la validation des modèles cinématiques de plissement. Application à l’Atlas méridional tunisien ; Thesis Doc. Sci. Univ. des Sciences et des Techniques de Nantes. 223 p

  3. Ahmadi R, Ouali J, Mercier E, Mansy JL, Lanoë BV, Launeau P, Rhekhiss F, Rafini S (2006) The geomorphologic responses to hinge migration in the fault-related folds in the Southern Tunisian Atlas. J Struct Geol 28:721–728. https://doi.org/10.1016/j.jsg.2006.01.004

    Article  Google Scholar 

  4. Ananaba SE, Ajakaiye DE (1987) Evidence of tectonic control of mineralization in Nigeria from lineament density analysis. A Landsat-study. Int J Remote Sens 8(10):1445–1453. https://doi.org/10.1080/01431168708954788

    Article  Google Scholar 

  5. Asadzadeh S, de Souza Filho CR (2016) A review on spectral processing methods for geological remote sensing. Int J Appl Earth Obs 47:69–90. https://doi.org/10.1016/j.jag.2015.12.004

    Article  Google Scholar 

  6. Barsi JA, Lee K, Kvaran G, Markham BL, Pedelty JA (2014) The spectral response of the Landsat-8 Operational Land Imager. Remote Sens 6(10):10232–10251. https://doi.org/10.3390/rs61010232

    Article  Google Scholar 

  7. Bhuiyan MA, Kumamoto T, Suzuki S (2015) Application of remote sensing and GIS for evaluation of the recent morphological characteristics of the lower Brahmaputra-Jamuna River, Bangladesh. Earth Sci Inform 8(3):551–568. https://doi.org/10.1007/s12145-014-0180-4

    Article  Google Scholar 

  8. Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8(2):148–159. https://doi.org/10.1111/j.1461-0248.2004.00707.x

    Article  Google Scholar 

  9. Choi EY, Choi DS, Choi HS, Lim TG, Jung LC, Yoon WC (2003) A development of enhanced automatic lineament extraction algorithm and its application. Geophys Geophys Explor 6(1):7–12

    Google Scholar 

  10. Corgne S, Magagi R, Yergeau M, Sylla D (2010) An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS. Remote Sens Environ 114(9):1863–1875. https://doi.org/10.1016/j.rse.2010.03.004

    Article  Google Scholar 

  11. Coulibaly L (1996) Interprétation structurale des linéaments par traitement d’image satellitaire: cas des sous-provinces d’Abitibi et d’Opatica (Québec); Univ. de Sherbrooke 117 p

  12. Croudace IW, Rothwell RG (Eds.) (2015) Micro-XRF studies of sediment cores: applications of a non-destructive tool for the environmental sciences. Vol. 17. Springer

  13. Dadon A, Peeters A, Ben-Dor E, Karnieli A (2011) A semi-automated GIS model for extracting geological structural information from a spaceborne thematic image. Gisci Remote Sens 48(2):264–279. https://doi.org/10.2747/1548-1603.48.2.264

    Article  Google Scholar 

  14. Dasho OA, Ariyibi EA, Akinluyi FO, Awoyemi MO, Adebayo AS (2017) Application of satellite remote sensing to groundwater potential modeling in Ejigbo area, Southwestern Nigeria. Earth Syst Environ 3:615. https://doi.org/10.1007/s40808-017-0322-z

    Article  Google Scholar 

  15. Davidson CE and Ben-David A (2011) On the use of covariance and correlation matrices in hyperspectral detection; In AIPR, pp 1–6. https://doi.org/10.1109/AIPR.2011.6176374

  16. Dekavalla M, Argialas D (2018) A region merging segmentation with local scale parameters: applications to spectral and elevation data. Remote Sens 10(12):2024

    Article  Google Scholar 

  17. Djemmal S, Menani MR, Chamekh K, Baali F (2019) The contribution of fracturations in the emergence of the thermal springs in Setif city, Eastern Algeria. Carbonates Evaporites 34(1):21–29

    Article  Google Scholar 

  18. El Maayar M, Chen JM (2006) Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture. Remote Sens Environ 102(1):33–51. https://doi.org/10.1016/j.rse.2006.01.017

    Article  Google Scholar 

  19. Embabi NS, Moawad MB (2014) A semi-automated approach for mapping geomorphology of El Bardawil Lake, Northern Sinai, Egypt, using integrated remote sensing and GIS techniques. Egypt J Remote Sens 17(1):41–60. https://doi.org/10.1016/j.ejrs.2014.02.002

    Article  Google Scholar 

  20. Goslee SC (2011) Analyzing remote sensing data in R: the landsat package. J Stat Softw 43(4):1–25

    Article  Google Scholar 

  21. Hamdani N, Baali A (2019) Fracture network mapping using Landsat 8 OLI data and linkage with the karst system: a case study of the Moroccan Central Middle Atlas. Remote Sens Earth Syst Sci 2:1. https://doi.org/10.1007/s41976-019-0011-y

    Article  Google Scholar 

  22. Hegazy MN, Effat HA (2010) Monitoring some environmental impacts of oil industry on coastal zone using different remotely sensed data. Egypt J Remote Sens 13(1):63–74. https://doi.org/10.1016/j.ejrs.2010.07.008

    Article  Google Scholar 

  23. Henchiri M (2007) Sedimentation, depositional environment and diagenesis of Eocene biosiliceous deposits in Gafsa basin (southern Tunisia). J Afr Earth Sci 49:187–200. https://doi.org/10.1016/j.jafrearsci.2007.09.001

    Article  Google Scholar 

  24. Herrnsdorf J, Strain MJ and Dawson MD (2016) Control of automated systems with a structured light illumination source; In IEEE Photon. Conf. (IPC), IEEE pp 560–561. https://doi.org/10.1109/IPCon.2016.7831230

  25. Hobbs WH (1904) Lineaments of the Atlantic border region. Bull Geol Soc Am 15(1):483–506. https://doi.org/10.1130/GSAB-15-483

    Article  Google Scholar 

  26. Hung LQ, Batelaan O, De Smedt F (2005) Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. In Remote sensing for environmental monitoring, GIS applications, and geology V (Vol. 5983, p. 59830T). International Society for Optics and Photonics

  27. Jacques PD, Machado R, Nummer AR (2012) A comparison for a multiscale study of structural lineaments in southern Brazil: LANDSAT-7 ETM+ and shaded relief images from SRTM3-DEM. An Acad Bras Cienc 84(4):931–942. https://doi.org/10.1590/S0001-37652012000400008

    Article  Google Scholar 

  28. Javhar A, Chen X, Bao A, Jamshed A, Yunus M, Jovid A, Latipa T (2019) Comparison of multi-resolution optical Landsat-8, Sentinel-2 and radar Sentinel-1 data for automatic lineament extraction: a case study of Alichur Area, SE Pamir. Remote Sens 11(7):778

    Article  Google Scholar 

  29. Johnson BA, Scheyvens H, Shivakoti BR (2014) An ensemble pansharpening approach for finer-scale mapping of sugarcane with Landsat 8 imagery. Int J Appl Earth Obs 33:218–225. https://doi.org/10.1016/j.jag.2014.06.003

    Article  Google Scholar 

  30. Jordán G, Meijninger BML, Van Hinsbergen DJJ, Meulenkamp JE, Van Dijk PM (2005) Extraction of morphotectonic features from DEMs: development and applications for study areas in Hungary and NW Greece. Int J Appl Earth Obs 7(3):163–182. https://doi.org/10.1016/j.jag.2005.03.003

    Article  Google Scholar 

  31. Jutz SL, Chorowicz J (1993) Geological mapping and detection of oblique extensional structures in the Kenyan Rift Valley with a SPOT/Landsat-TM datamerge. Int J Remote Sens 14(9):1677–1688. https://doi.org/10.1080/01431169308953994

    Article  Google Scholar 

  32. Kadri A, Essid EM, Merzeraud G (2015) “Kasserine Island” boundaries variations during the Upper Cretaceous-Eocene (central Tunisia). J Afr Earth Sci 111:244–257. https://doi.org/10.1016/j.jafrearsci.2015.07.027

    Article  Google Scholar 

  33. Kumari B, Tayyab M, Mallick J, Khan MF, Rahman A (2018) Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India. Remote Sens Earth Syst Sci 1:63. https://doi.org/10.1007/s41976-018-0004-2

    Article  Google Scholar 

  34. Lee C, Bethel JS (2004) Extraction, modelling, and use of linear features for restitution of airborne hyperspectral imagery. ISPRS J Photogramm Remote Sens 58(5):289–300. https://doi.org/10.1016/j.isprsjprs.2003.10.003

    Article  Google Scholar 

  35. Liao M, Jiang H, Wang Y, Wang T, Zhang L (2013) Improved topographic mapping through high-resolution SAR interferometry with atmospheric effect removal. ISPRS J Photogramm Remote Sens 80:72–79. https://doi.org/10.1016/j.isprsjprs.2013.03.008

    Article  Google Scholar 

  36. Liu CX, Tan L, Ni CZ and Yan YF (2013) Automatically extraction of lineaments from DEM; In Appl Mech Mater vol. 391 pp. 394-397, Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMM.391.394

    Article  Google Scholar 

  37. Lopes A, Nezry E, Touzi R, Laur H (1993) Structure detection and statistical adaptive speckle filtering in SAR images. Int J Remote Sens 14(9):1735–1758

    Article  Google Scholar 

  38. Lwin K, Murayama Y (2013) Smart eco-path finder for mobile GIS users. URISA J 25(2):5–13. https://doi.org/10.4236/jgis.2014.62011

    Article  Google Scholar 

  39. Masoud AA, Koike K (2011) Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS J Photogramm Remote Sens 66(6):818–832. https://doi.org/10.1016/j.isprsjprs.2011.08.003

    Article  Google Scholar 

  40. Maurer T (2013) How to pan-sharpen images using the Gram-Schmidt pan-sharpen method – a recipe. Int Arch Photogramm 1:W1

    Google Scholar 

  41. Middleton M, Schnur T, Sorjonen-Ward P, Hyvönen E (2015) Geological lineament interpretation using the object-based image analysis approach: results of semi-automated analyses versus visual interpretation. Geol Surv Finland Spec Pap 57:135–154

    Google Scholar 

  42. Msaddek MH (2017) Analyse quantitative et qualitative de la fracturation de la région Bouhedma-Ségui, implication hydrogéologique. Ph.D. thesis, University Tunis El Manar. Fac. Sc. Tunis. 222p

  43. Msaddek MH, Moumni Y, Chenini I, Mercier E, Dlala M (2016) Fractures network analysis and interpretation in carbonate rocks using a multi-criteria statistical approach. Case study of Jebal Chamsi and Jebal Belkhir, South-western part of Tunisia. J Afr Earth Sci 123:99–109. https://doi.org/10.1016/j.jafrearsci.2016.07.016

    Article  Google Scholar 

  44. Mwaniki MW, Moeller MS, Schellmann G (2015) A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: a case study of central region Kenya. Int Arch Photogramm 40(7):897

    Google Scholar 

  45. Newton IH, Islam AM, Islam AS, Islam GT, Tahsin A (2018) Razzaque S (2018) yield prediction model for potato using Landsat time series images driven vegetation indices. Remote Sens Earth Syst Sci 1:29. https://doi.org/10.1007/s41976-018-0006-0

    Article  Google Scholar 

  46. Parida BR, Ranjan AK (2019) Wheat acreage mapping and yield prediction using Landsat-8 OLI satellite data: a case study in Sahibganj Province, Jharkhand (India). Remote Sens Earth Syst Sci 2:96. https://doi.org/10.1007/s41976-019-00015-9

    Article  Google Scholar 

  47. Paul GC, Saha S, Hembram TK (2019) Application of the GIS-based probabilistic models for mapping the flood susceptibility in Bansloi sub-basin of Ganga-Bhagirathi River and their comparison. Remote Sens Earth Syst Sci 2:120. https://doi.org/10.1007/s41976-019-00018-6

    Article  Google Scholar 

  48. Potter C (2019) Changes in vegetation cover of Yellowstone National Park estimated from MODIS greenness trends, 2000 to 2018. Remote Sens Earth Syst Sci 2:147. https://doi.org/10.1007/s41976-019-00019-5

    Article  Google Scholar 

  49. Raghavan V (1986) Lineament analysis of Cannanore district and their implication on the tectonic evolution of the area. J Earth Syst Sci 95(3):363–371. https://doi.org/10.1007/BF02842503

    Article  Google Scholar 

  50. Rai SN, Thiagarajan S (2007) 2-D crustal thermal structure along Thuadara-Sindad DSS profile across Narmada-Son lineament, central India. J Earth Syst Sci 116(4):347. https://doi.org/10.1007/s12040-007-0032-4

    Article  Google Scholar 

  51. Rajabi S, Eliassi M, Saidi A (2012) Statistic and genetic investigation of faults in North Tehran tectonic wedge (South Central Alborz). Arab J Geosci 5(6):1269–1277. https://doi.org/10.1007/s12517-010-0270-7

    Article  Google Scholar 

  52. Saepuloh A, Haeruddin H, Heriawan MN, Kubo T, Koike K, Malik D (2018) Application of lineament density extracted from dual orbit of synthetic aperture radar (SAR) images to detecting fluids paths in the Wayang Windu geothermal field (West Java, Indonesia). Geothermics 72:145–155

    Article  Google Scholar 

  53. Salui CL (2018) Methodological validation for automated lineament extraction by LINE method in PCI Geomatica and MATLAB based Hough transformation. J Geol Soc India 92(3):321–328

    Article  Google Scholar 

  54. Serbina L and Miller HM (2014) Landsat and water: case studies of the uses and benefits of Landsat imagery in water resources; U.S. Geological Survey Open-File Report, 2014–1108, 61 p. https://doi.org/10.3133/ofr20141108

  55. Sharma P, Patel LK, Ravindra R, Singh A, Mahalinganathan K, Thamban M (2016) Role of debris cover to control specific ablation of adjoining Batal and Sutri Dhaka glaciers in Chandra Basin (Himachal Pradesh) during peak ablation season. J Earth Syst Sci 125(3):459–473. https://doi.org/10.1007/s12040-016-0681-2

    Article  Google Scholar 

  56. Šilhavý J, Minár J, Mentlík P, Sládek J (2016) A new artefacts resistant method for automatic lineament extraction using multi-hillshade hierarchic clustering (MHHC). Comput Geosci 92:9–20. https://doi.org/10.1016/j.cageo.2016.03.015

    Article  Google Scholar 

  57. Su L, Gibeaut JC (2013) An inter-sensor calibration and atmospheric correction system for long-term time series of AVHRR imagery for coastal waters. Gisci Remote Sens 50(2):184–195. https://doi.org/10.1080/15481603.2013.790175

    Article  Google Scholar 

  58. Vogelmann JE, Helder D, Morfitt R, Choate MJ, Merchant JW, Bulley H (2001) Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus radiometric and geometric calibrations and corrections on landscape characterization. Remote Sens Environ 78(1):55–70. https://doi.org/10.1016/S0034-4257(01)00249-8

    Article  Google Scholar 

  59. Wang J, Howarth PJ (1990) Use of the Hough transform in automated lineament. IEEE Trans Geosci Remote Sens 28(4):561–567

    Article  Google Scholar 

  60. Won JS, Kim SW, Min KD, Lee YH (1998) A development of automatic lineament extraction algorithm from Landsat TM images for geological applications. J Korean Soc Remote Sens 14(2):175–195

    Google Scholar 

  61. Yao TK (2009) Hydrodynamisme dans les aquifères de socle cristallin et cristallophyllien du Sud-Ouest de la Côte d’Ivoire: cas du département de Soubré: apports de la télédétection, de la géomorphologie et de l’hydrogéochimie; Doctoral dissertation, Conservatoire national des arts et métiers–CNAM, Univ. de Cocody, 337p

  62. Yeomans CM, Middleton M, Shail RK, Grebby S, Lusty PA (2019) Integrated object-based image analysis for semi-automated geological lineament detection in southwest England. Comput Geosci 123:137–148

    Article  Google Scholar 

  63. Zargouni F (1985) Tectonique de l’Atlas méridional de Tunisie, évolution géométrique et cinématique en zones de cisaillement; Thesis Es Sciences, Univ. Louis Pasteur de Strasbourg, 304p

  64. Zhao F, Mallorqui J, Iglesias R, Gili J, Corominas J (2018) Landslide monitoring using multi-temporal SAR interferometry with advanced persistent scatterers identification methods and super high-spatial resolution TerraSAR-X images. Remote Sens 10(6):921

    Article  Google Scholar 

  65. Zouaghi T, Ferhi I, Bédir M, Ben Youssef M, Gasmi M, Inoubli MH (2011) Analysis of Cretaceous (Aptian) strata in central Tunisia, using 2D seismic data and well logs. J Afr Earth Sci 61(1):38–61. https://doi.org/10.1016/j.jafrearsci.2011.05.002

    Article  Google Scholar 

Download references

Acknowledgements

Data are available from the U.S. Geological Survey. The research was supported by Tunis El Manar University and the Research Unit UR13ES26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Haythem Msaddek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Msaddek, M.H., Moumni, Y., Chenini, I. et al. Applicability of Developed Algorithm for Semi-automated Extraction and Morphotectonic Interpretation of Lineaments Using Remotely Sensed Data, Southwestern Tunisia. Remote Sens Earth Syst Sci 2, 292–307 (2019). https://doi.org/10.1007/s41976-019-00028-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-019-00028-4

Keywords

Navigation