Skip to main content
Log in

Selective Thematic Information Content Enhancement of LANDSAT ETM Imagery

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

A selective variance reduction methodology is presented that reduces the band-to-band correlation observed in Landsat ETM imagery allowing a thematic-based de-correlation stretch. The bands 1 to 5, and band 7 are transformed to principal components (PCs). PC-1 and PC-2 account for the 94.7% of the total variance evident in images. In the current case study, band 3 and band 4 are selected to predict PC-1 and PC-2, respectively, through linear regression models. The PC-1 and PC-2 predicted image accounts for the 94.3% and 91.1%, respectively, of the total variance evident in the regression models. The bands 1 to 5 and 7 images are reconstructed from the two PC-1 and PC-2 residual images as well as PC-3 to PC-6 images. Thus, a thematic-based (band-dependent) decorrelation stretch of ETM imagery is achieved allowing the elimination of variance components that are related to spectral signature similarity of landcover types evident in Central Valley (California). The reconstructed imagery, a new higher order Landsat product, will assist image analysis, photo-interpretation, agricultural terrain analysis, mapping applications, and environmental monitoring at global level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tatem A, Nayar A, Hay S (2006) Scene selection and the use of NASA’s global orthorectified Landsat dataset for land cover and land use change monitoring. Int J Remote Sens 27:3073–3078. https://doi.org/10.1080/01431160600589195

    Article  Google Scholar 

  2. Roy D, Wulder M, Loveland T et al (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172. https://doi.org/10.1016/j.rse.2014.02.001

    Article  Google Scholar 

  3. Markham B, Barker J (1985) Spectral characterization of the LANDSAT thematic mapper sensors. Int J Remote Sens 6:697–716. https://doi.org/10.1080/01431168508948492

    Article  Google Scholar 

  4. Goward S, Arvidson T, Williams D, Faundeen J, Irons J, Franks S (2006) Historical record of Landsat global coverage. Photogramm Eng Remote Sens 72:1155–1169. https://doi.org/10.14358/PERS.72.10.1155

    Article  Google Scholar 

  5. Kovalsky V, Roy D (2013) The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation. Remote Sens Environ 130:280–293. https://doi.org/10.1016/j.rse.2012.12.003

    Article  Google Scholar 

  6. Sonobe R, Yamaya Y, Tani H, Wang X, Kobayashi N, Mochizuki K (2017) Mapping crop cover using multi-temporal Landsat 8 OLI imagery. Int J Remote Sens 38:4348–4361. https://doi.org/10.1080/01431161.2017.1323286

    Article  Google Scholar 

  7. Gill T, Johansen K, Phinn S, Trevithick R, Scarth P, Armston J (2017) A method for mapping Australian woody vegetation cover by linking continental-scale field data and long-term Landsat time series. Int J Remote Sens 38:679–705. https://doi.org/10.1080/01431161.2016.1266112

    Article  Google Scholar 

  8. Wang Z, Tyo J, Hayat M (2007) Data interpretation for spectral sensors with correlated bands. J Opt Soc Am A Opt Image Sci Vis 24:2864–2870. https://doi.org/10.1364/JOSAA.24.002864

    Article  Google Scholar 

  9. Lillesand T, Kiefer R, Chipman J (2008) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  10. ETM (2017) Landsat enhanced thematic mapper plus spectral resolution. U.S.G.S., Available online at: https://www.usgs.gov/faqs/what-are-best-landsat-spectral-bands-use-my-study? (accessed 15 Sept 2018)

  11. Mather P, Koch M (2011) Computer processing of remotely-sensed images, 4th edn. John Wiley & Sons, Chichester

    Book  Google Scholar 

  12. Landam S, Everitt B (2004) A handbook for statistical analyses using SPSS. Chapman and Hall/CRC Press, New York

    Google Scholar 

  13. Miliaresis G (2012) Elevation, latitude and longitude decorrelation stretch of multi-temporal near-diurnal LST imagery. Int J Remote Sens 33:6020–6034. https://doi.org/10.1080/01431161.2012.676690

    Article  Google Scholar 

  14. Miliaresis G (2013) Terrain analysis for active tectonic zone characterization, a new application for MODIS night LST (MYD11C3) dataset. Int J Geogr Inf Sci 27:1417–1432. https://doi.org/10.1080/13658816.2012.685172

    Article  Google Scholar 

  15. Miliaresis G (2016) Spatial decorrelation stretch of annual (2003-2014) Daymet precipitation summaries on a 1-km grid for California, Nevada, Arizona and Utah. Environ Monit Assess 188. https://doi.org/10.1007/s10661-016-5365-5

  16. Miliaresis G (2017) Iterative selective spatial variance reduction of MYD11A2 LST data. Earth Sci Inf 10:15–27. https://doi.org/10.1007/s12145-016-0271-5

    Article  Google Scholar 

  17. Miliaresis G (2017) Selective variance reduction (SVR). GitHub Project. Available online at: https://github.com/miliaresis/SVR, (accessed 15 Sept 2018)

  18. Miliaresis G (2014) Daily temperature oscillation enhancement of multi-temporal LST imagery. Photogramm Eng Remote Sens 80:423–428. https://doi.org/10.14358/PERS.80.5.423

    Article  Google Scholar 

  19. Soulard C, Wilson T (2015) Recent land-use/land-cover change in the Central California Valley. J Land Use Sci 10:59–80. https://doi.org/10.1080/1747423X.2013.841297

    Article  Google Scholar 

  20. CALCC (2015) Land cover and agriculture in California’s Central Valley. California Landscape Conservation Cooperative. Available online at: https://databasin.org/maps/38efc8f062e94305b32839fe8f88ab14 (accessed 15 Sept 2018)

  21. Slater J, Garvey G, Johnston C, Haase J, Heady B, Kroenung G, Little J (2006) The SRTM data “finishing” process and products. Photogramm Eng Remote Sens 72:237–247. https://doi.org/10.14358/PERS.72.3.237

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Ch. Miliaresis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miliaresis, G.C. Selective Thematic Information Content Enhancement of LANDSAT ETM Imagery. Remote Sens Earth Syst Sci 1, 53–62 (2018). https://doi.org/10.1007/s41976-018-0005-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-018-0005-1

Keywords

Navigation