Skip to main content
Log in

Hormonelle, neuromuskuläre und anatomische Ursachen für die erhöhte Inzidenz von Rupturen des vorderen Kreuzbands bei Sportlerinnen

Causes Hormonaux, Neuromusculaires et Anatomiques de l’Incidence Accrue des Ruptures du Ligament Croisé Antérieur chez les Sportives

  • Prävention
  • Published:
Journal für Gynäkologische Endokrinologie/Schweiz Aims and scope

Zusammenfassung

Frauen haben ein erhöhtes relatives Risiko, eine vordere Kreuzbandruptur zu erleiden. Die Gründe hierfür sind multifaktoriell und beinhalten unter anderem anatomische, neuromuskuläre und hormonelle Faktoren. Dieses Risiko lässt sich durch dezidierte Präventionsprogramme, die insbesondere darauf abzielen, die neuromuskulären Voraussetzungen zu verbessern, reduzieren. Insgesamt ist die Datenlage sehr heterogen und lässt insofern nur bedingt Rückschlüsse auf die tägliche Praxis zu. Evidente Daten zu erhalten und sinnvoll aufgebaute Studien zu erstellen, erscheint aufgrund der vielschichtigen Einflussfaktoren schwierig. Eine Möglichkeit, eine höhere Qualität bezüglich der Literatur zu erhalten, sind nationale oder internationale Register, wie sie z. B. in manchen skandinavischen Ländern bereits implementiert sind.

Résumé

Les femmes ont un risque relatif plus élevé de subir une rupture d’un ligament croisé. Les causes sont multifactorielles, incluant entre autres des facteurs anatomiques, neuromusculaires et hormonaux. Ce risque peut être réduit par des programmes de prévention déterminés visant en particulier à améliorer les conditions neuromusculaires. Les données disponibles sont globalement très hétérogènes et elles permettent mal de tirer des conclusions pour la pratique quotidienne. À cause de la complexité des facteurs d’influence, il semble difficile d’obtenir des données fiables et d’élaborer des conceptions d’études pertinentes. Un moyen d’obtenir une meilleure qualité de la littérature est de recourir à des registres nationaux ou internationaux tels qu’ils sont déjà implémentés p. ex. dans certains pays scandinaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. SUVA (2020) Unfallstatistik UVG 2020, S 47

    Google Scholar 

  2. Hewett TE, Myer GD, Ford KR (2006) Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med 34(2):299–311

    PubMed  Google Scholar 

  3. Ryan J, Magnussen RA, Cox CL, Hurbanek JG, Flanigan DC, Kaeding CC (2014) ACL reconstruction: do outcomes differ by sex? A systematic review. J Bone Joint Surg Am 96(6):507–512

    PubMed  Google Scholar 

  4. Lin CY, Casey E, Herman DC, Katz N, Tenforde AS (2018) Sex Differences in Common Sports Injuries. PM R 10(10):1073–1082. https://doi.org/10.1016/j.pmrj.2018.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sutton KM, Bullock JM (2013) Anterior cruciate ligament rupture: differences between males and females. J Am Acad Orthop Surg 21(1):41–50

    PubMed  Google Scholar 

  6. Conley S, Rosenberg A, Crowninshield R (2007) The female knee: anatomic variations. J Am Acad Orthop Surg 15(Suppl 1):S31–S36 (http://www.ncbi.nlm.nih.gov/pubmed/17766787)

    PubMed  Google Scholar 

  7. Giugliano DN, Solomon JL (2007) ACL tears in female athletes. Phys Med Rehabil Clin N Am 18(3):417–438 (http://www.ncbi.nlm.nih.gov/pubmed/17678760)

    PubMed  Google Scholar 

  8. Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31(6):831–842 (http://www.ncbi.nlm.nih.gov/pubmed/14623646)

    PubMed  Google Scholar 

  9. LaPrade RF, Burnett QM (1994) Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med 22(2):198–202 (discussion 203. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8198187)

    CAS  PubMed  Google Scholar 

  10. Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 21(4):535–539 (http://www.ncbi.nlm.nih.gov/pubmed/8368414)

  11. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2011) Is there a correlation between posterior tibial slope and non-contact anterior cruciate ligament injuries? Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S109–S114 (http://www.ncbi.nlm.nih.gov/pubmed/21607739)

    PubMed  Google Scholar 

  12. Terauchi M, Hatayama K, Yanagisawa S, Saito K, Takagishi K (2011) Sagittal alignment of the knee and its relationship to noncontact anterior cruciate ligament injuries. Am J Sports Med 39(5):1090–1094 (http://www.ncbi.nlm.nih.gov/pubmed/21285443)

    PubMed  Google Scholar 

  13. Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC et al (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 38(1):54–62 (http://www.ncbi.nlm.nih.gov/pubmed/19846692)

    PubMed  Google Scholar 

  14. Khan MS, Seon JK, Song EK (2011) Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. Int Orthop 35(8):1251–1256 (http://www.ncbi.nlm.nih.gov/pubmed/21340682)

    PubMed  PubMed Central  Google Scholar 

  15. Chandrashekar N, Slauterbeck J, Hashemi J (2005) Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study. Am J Sports Med 33(10):1492–1498 (http://www.ncbi.nlm.nih.gov/pubmed/16009992)

    PubMed  Google Scholar 

  16. Lipps DB, Oh YK, Ashton-Miller JA, Wojtys EM (2012) Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med 40(1):32–40 (http://www.ncbi.nlm.nih.gov/pubmed/21917612)

    PubMed  Google Scholar 

  17. Hashemi J, Mansouri H, Chandrashekar N, Slauterbeck JR, Hardy DM, Beynnon BD (2011) Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament. J Orthop Res 29(7):993–1001 (http://www.ncbi.nlm.nih.gov/pubmed/21246609)

    PubMed  Google Scholar 

  18. Sinclair J, Brooks D, Stainton P (2019) Sex differences in ACL loading and strain during typical athletic movements: a musculoskeletal simulation analysis. Eur J Appl Physiol 119(3):713–721. https://doi.org/10.1007/s00421-018-04062-w

    Article  PubMed  Google Scholar 

  19. Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW (2001) Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and Intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 29(1):58–66. https://doi.org/10.1177/03635465010290011501

    Article  CAS  PubMed  Google Scholar 

  20. Söderman K, Alfredson H, Pietilä T, Werner S (2001) Risk factors for leg injuries in female soccer players: a prospective investigation during one out-door season. Knee Surg Sports Traumatol Arthrosc 9(5):313–321 (http://www.ncbi.nlm.nih.gov/pubmed/11685365)

    PubMed  Google Scholar 

  21. Boden BP, Dean GS, Feagin JA, Garrett WE (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578 (http://www.ncbi.nlm.nih.gov/pubmed/10875418)

    CAS  PubMed  Google Scholar 

  22. Beynnon BD, Bernstein IM, Belisle A, Brattbakk B, Devanny P, Risinger R et al (2005) The effect of estradiol and progesterone on knee and ankle joint laxity. Am J Sports Med 33(9):1298–1304 (http://www.ncbi.nlm.nih.gov/pubmed/16002485)

    PubMed  Google Scholar 

  23. Hewett TE, Myer GD, Ford KR, Heidt RS, Colosimo AJ, McLean SG et al (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501 (http://www.ncbi.nlm.nih.gov/pubmed/15722287)

    PubMed  Google Scholar 

  24. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M et al (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34(9):1512–1532 (http://www.ncbi.nlm.nih.gov/pubmed/16905673)

    PubMed  Google Scholar 

  25. Waldén M, Krosshaug T, Bjørneboe J, Andersen TE, Faul O, Hägglund M (2015) Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br J Sports Med 49(22):1452–1460. https://doi.org/10.1136/bjsports-2014-094573

    Article  PubMed  Google Scholar 

  26. Stuelcken MC, Mellifont DB, Gorman AD, Sayers MGL (2016) Mechanisms of anterior cruciate ligament injuries in elite women’s netball: a systematic video analysis. J Sports Sci 34(16):1516–1522. https://doi.org/10.1080/02640414.2015.1121285

    Article  PubMed  Google Scholar 

  27. Trimble MH, Bishop MD, Buckley BD, Fields LC, Rozea GD (2002) The relationship between clinical measurements of lower extremity posture and tibial translation. Clin Biomech 17(4):286–290 (http://www.ncbi.nlm.nih.gov/pubmed/12034121)

    Google Scholar 

  28. Loudon JK, Jenkins W, Loudon KL (1996) The relationship between static posture and ACL injury in female athletes. J Orthop Sports Phys Ther 24(2):91–97 (http://www.ncbi.nlm.nih.gov/pubmed/8832472)

    CAS  PubMed  Google Scholar 

  29. Ford KR, Myer GD, Smith RL, Byrnes RN, Dopirak SE, Hewett TE (2005) Use of an overhead goal alters vertical jump performance and biomechanics. J Strength Cond Res 19(2):394–399 (http://www.ncbi.nlm.nih.gov/pubmed/15903381)

    PubMed  Google Scholar 

  30. Nyland J, Caborn DN, Shapiro R, Johnson DL, Fang H (1999) Hamstring extensibility and transverse plane knee control relationship in athletic women. Knee Surg Sports Traumatol Arthrosc 7(4):257–261 (http://www.ncbi.nlm.nih.gov/pubmed/10462218)

    CAS  PubMed  Google Scholar 

  31. Huston LJ, Wojtys EM (1996) Neuromuscular performance characteristics in elite female athletes. Am J Sports Med 24(4):427–436 (http://www.ncbi.nlm.nih.gov/pubmed/8827300)

    CAS  PubMed  Google Scholar 

  32. Ebben WP, Fauth ML, Petushek EJ, Garceau LR, Hsu BE, Lutsch BN et al (2010) Gender-based analysis of hamstring and quadriceps muscle activation during jump landings and cutting. J Strength Cond Res 24(2):408–415 (http://www.ncbi.nlm.nih.gov/pubmed/20124793)

    PubMed  Google Scholar 

  33. Markolf KL, O’Neill G, Jackson SR, McAllister DR (2004) Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments. Am J Sports Med 32(5):1144–1149 (http://www.ncbi.nlm.nih.gov/pubmed/15262635)

    PubMed  Google Scholar 

  34. Markolf KL, Graff-Radford A, Amstutz HC (1978) In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am 60(5):664–674 (http://www.ncbi.nlm.nih.gov/pubmed/681387)

    CAS  PubMed  Google Scholar 

  35. Rozzi SL, Lephart SM, Gear WS, Fu FH (1999) Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med 27(3):312–319 (http://www.ncbi.nlm.nih.gov/pubmed/10352766)

    CAS  PubMed  Google Scholar 

  36. Myer GD, Ford KR, Hewett TE (2005) The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J Electromyogr Kinesiol 15(2):181–189 (http://www.ncbi.nlm.nih.gov/pubmed/15664147)

    PubMed  Google Scholar 

  37. Ruan M, Zhang Q, Wu X (2017) Acute effects of static stretching of hamstring on performance and anterior cruciate ligament injury risk during stop-jump and cutting tasks in female athletes. J Strength Cond Res 31(5):1241–1250 (http://www.ncbi.nlm.nih.gov/pubmed/28118311)

    PubMed  PubMed Central  Google Scholar 

  38. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med 35(7):1123–1130 (http://www.ncbi.nlm.nih.gov/pubmed/17468378)

    PubMed  Google Scholar 

  39. Andrish JT (2001) Anterior cruciate ligament injuries in the skeletally immature patient. Am J Orthop 30(2):103–110 (http://www.ncbi.nlm.nih.gov/pubmed/11234936)

    CAS  PubMed  Google Scholar 

  40. Dragoo JL, Lee RS, Benhaim P, Finerman GAM, Hame SL (2003) Relaxin receptors in the human female anterior cruciate ligament. Am J Sports Med 31(4):577–584 (http://www.ncbi.nlm.nih.gov/pubmed/12860548)

    PubMed  Google Scholar 

  41. Liu SH, Al-Shaikh R, Panossian V, Yang RS, Nelson SD, Soleiman N et al (1996) Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. J Orthop Res 14(4):526–533 (http://www.ncbi.nlm.nih.gov/pubmed/8764860)

    CAS  PubMed  Google Scholar 

  42. Yu WD, Panossian V, Hatch JD, Liu SH, Finerman GA (2001) Combined effects of estrogen and progesterone on the anterior cruciate ligament. Clin Orthop Relat Res 383:268–281 (http://www.ncbi.nlm.nih.gov/pubmed/11210964)

    Google Scholar 

  43. Adachi N, Nawata K, Maeta M, Kurozawa Y (2008) Relationship of the menstrual cycle phase to anterior cruciate ligament injuries in teenaged female athletes. Arch Orthop Trauma Surg 128(5):473–478 (http://www.ncbi.nlm.nih.gov/pubmed/17909824)

    PubMed  Google Scholar 

  44. Arendt EA, Bershadsky B, Agel J (2002) Periodicity of noncontact anterior cruciate ligament injuries during the menstrual cycle. J Gend Specif Med 5(2):19–26 (http://www.ncbi.nlm.nih.gov/pubmed/11974671)

  45. Ruedl G, Ploner P, Linortner I, Schranz A, Fink C, Sommersacher R et al (2009) Are oral contraceptive use and menstrual cycle phase related to anterior cruciate ligament injury risk in female recreational skiers? Knee Surg Sports Traumatol Arthrosc 17(9):1065–1069 (http://www.ncbi.nlm.nih.gov/pubmed/19333573)

    PubMed  Google Scholar 

  46. Acevedo RJ, Rivera-Vega A, Miranda G, Micheo W (2014) Anterior cruciate ligament injury: identification of risk factors and prevention strategies. Curr Sports Med Rep 13(3):186–191

    PubMed  Google Scholar 

  47. Herzberg SD, Motu’apuaka ML, Lambert W, Fu R, Brady J, Guise JM (2017) The effect of menstrual cycle and contraceptives on ACL injuries and laxity: a systematic review and meta-analysis. Orthop J Sport Med 5(7):1–10

    Google Scholar 

  48. Samuel CS, Butkus A, Coghlan JP, Bateman JF (1996) The effect of relaxin on collagen metabolism in the nonpregnant rat pubic symphysis: the influence of estrogen and progesterone in regulating relaxin activity. Endocrinology 137(9):3884–3890 (http://www.ncbi.nlm.nih.gov/pubmed/8756561)

    CAS  PubMed  Google Scholar 

  49. Dragoo JL, Castillo TN, Braun HJ, Ridley BA, Kennedy AC, Golish SR (2011) Prospective correlation between serum relaxin concentration and anterior cruciate ligament tears among elite collegiate female athletes. Am J Sports Med 39(10):2175–2180 (http://www.ncbi.nlm.nih.gov/pubmed/21737831)

    PubMed  Google Scholar 

  50. Sarwar R, Niclos BB, Rutherford OM (1996) Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol 493(Pt 1):267–272 (http://www.ncbi.nlm.nih.gov/pubmed/8735711)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lebrun CM (1994) The effect of the phase of the menstrual cycle and the birth control pill on athletic performance. Clin Sports Med 13(2):419–441 (http://www.ncbi.nlm.nih.gov/pubmed/8013042)

    CAS  PubMed  Google Scholar 

  52. Gray AM, Gugala Z, Baillargeon JG (2016) Effects of oral contraceptive use on anterior cruciate ligament injury epidemiology. Med Sci Sports Exerc 48(4):648–654 (http://www.ncbi.nlm.nih.gov/pubmed/26540261)

    PubMed  Google Scholar 

  53. Rahr-Wagner L, Thillemann TM, Mehnert F, Pedersen AB, Lind M (2014) Is the use of oral contraceptives associated with operatively treated anterior cruciate ligament injury? A case-control study from the Danish Knee Ligament Reconstruction Registry. Am J Sports Med 42(12):2897–2905 (http://www.ncbi.nlm.nih.gov/pubmed/25428957)

    PubMed  Google Scholar 

  54. Bistolfi A, Capella M, Guidotti C, Sabatini L, Artiaco S, Massè A et al (2021) Functional results of allograft vs. autograft tendons in anterior cruciate ligament (ACL) reconstruction at 10-year follow-up. Eur J Orthop Surg Traumatol 31(4):729–735 (http://www.ncbi.nlm.nih.gov/pubmed/33174066)

    PubMed  Google Scholar 

  55. Pujji O, Keswani N, Collier N, Black M, Doos L (2017) Evaluating the functional results and complications of autograft vs allograft use for reconstruction of the anterior cruciate ligament: a systematic review. Orthop Rev (Pavia). https://doi.org/10.4081/or.2017.6833

    Article  Google Scholar 

  56. Kohn L, Rembeck E, Rauch A (2020) Anterior cruciate ligament injury in adults: diagnostics and treatment. Orthopade 49(11):1013–1028

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Karpinski K, Häner M, Bierke S, Diermeier T, Petersen W (2021) Comparing knee laxity after anatomic anterior cruciate ligament reconstruction using quadriceps tendon versus semitendinosus tendon graft. Orthop J Sports Med 9(7):232596712110148. https://doi.org/10.1177/23259671211014849

    Article  Google Scholar 

  58. Shaerf DA, Pastides PS, Sarraf KM, Willis-Owen CA (2014) Anterior cruciate ligament reconstruction best practice: a review of graft choice. World J Orthop 5(1):23–29 (http://www.ncbi.nlm.nih.gov/pubmed/24649411)

    PubMed  PubMed Central  Google Scholar 

  59. Samuelsen BT, Webster KE, Johnson NR, Hewett TE, Krych AJ (2017) Hamstring autograft versus patellar tendon autograft for ACL reconstruction: is there a difference in graft failure rate? A meta-analysis of 47,613 patients. Clin Orthop Relat Res 475(10):2459–2468 (http://www.ncbi.nlm.nih.gov/pubmed/28205075)

    PubMed  PubMed Central  Google Scholar 

  60. Hughes JD, Lawton CD, Nawabi DH, Pearle AD, Musahl V (2020) Anterior cruciate ligament repair: the current status. J Bone Joint Surg Am 102(21):1900–1915 (http://www.ncbi.nlm.nih.gov/pubmed/32932291)

    PubMed  Google Scholar 

  61. Ageberg E, Forssblad M, Herbertsson P, Roos EM (2010) Sex differences in patient-reported outcomes after anterior cruciate ligament reconstruction: data from the Swedish knee ligament register. Am J Sports Med 38(7):1334–1342 (http://www.ncbi.nlm.nih.gov/pubmed/20410376)

    PubMed  Google Scholar 

  62. Tan SHS, Lau BPH, Khin LW, Lingaraj K (2016) The importance of patient sex in the outcomes of anterior cruciate ligament reconstructions. Am J Sports Med 44(1):242–254

    PubMed  Google Scholar 

  63. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lázaro-Haro C et al (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee Surg Sports Traumatol Arthrosc 17(8):859–879 (http://www.ncbi.nlm.nih.gov/pubmed/19506834)

    PubMed  Google Scholar 

  64. Ettlinger CF, Johnson RJ, Shealy JE (1995) A method to help reduce the risk of serious knee sprains incurred in alpine skiing. Am J Sports Med 23(5):531–537 (http://www.ncbi.nlm.nih.gov/pubmed/8526266)

    CAS  PubMed  Google Scholar 

  65. Sadoghi P, von Keudell A, Vavken P (2012) Effectiveness of anterior cruciate ligament injury prevention training programs. J Bone Joint Surg Am 94(9):769–776 (http://www.ncbi.nlm.nih.gov/pubmed/22456856)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Kuttner.

Ethics declarations

Interessenkonflikt

H. Kuttner und J.-R. Delaloye geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuttner, H., Delaloye, JR. Hormonelle, neuromuskuläre und anatomische Ursachen für die erhöhte Inzidenz von Rupturen des vorderen Kreuzbands bei Sportlerinnen. J. Gynäkol. Endokrinol. CH 25, 4–12 (2022). https://doi.org/10.1007/s41975-022-00233-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41975-022-00233-3

Schlüsselwörter

Mots-clés

Navigation