Skip to main content
Log in

Der Effekt von Wachstumshormon auf die menschlichen Alterungsprozesse. Teil 1

Effets de lʼhormone de croissance sur les processus de vieillissement humains. 1re partie

  • Originalien
  • Published:
Journal für Gynäkologische Endokrinologie/Schweiz Aims and scope

Zusammenfassung

Eine große Anzahl von Studien weist auf die signifikante Reduktion der Wachstumshormonsekretion und der damit zusammenhängenden IGF-1-Plasmaspiegel während des menschlichen Alterungsprozesses hin. Diese Veränderungen gehen einher mit der Erniedrigung von Muskelmasse, Knochenmasse, Vitalität und dem Verlust von anderen wichtigen physiologischen Funktionen. Es finden sich ferner Verschlechterungen mentaler und kognitiver Funktionen und das gehäufte Auftreten einer erhöhten altersbedingten Fragilität. Außerdem nimmt das Risiko für Übergewicht und Adipositas zu. Diese Veränderungen sind begleitet von Insulinresistenz, Diabetes Typ 2 und kardiovaskulären Komplikationen. In dieser Arbeit werden die Wirkungen der Wachstumshormontherapie und ihre Bedeutung für die Präventionsmedizin, speziell für die verbesserte Lebensqualität, den Anstieg der Körpermagermasse, einhergehend mit einer Verminderung der abdominalen Fettmasse, und die deutlich verbesserte Skelett- und Muskelfunktion dargestellt. Im Zusammenhang damit stehen der Schutz vor dem kardiometabolischen Syndrom, ein durch rhGH normalisierter Blutdruck, eine Verminderung thrombotischer Marker sowie eine normalisierte endotheliale Funktion. Insgesamt kann demonstriert werden, dass die rhGH-Anwendung als ein hervorragendes Instrument in der Altersprävention geeignet sein könnte. Eine unabdingbare Voraussetzung ist, dass die Auswahl der Patienten nach klaren Kriterien erfolgt. Das bedeutet, dass die Indikationsstellung sich nach dem Ziel der Therapie, dem Ausschluss bekannter Risiken und Nebenwirkungen, dem Alter und möglichen Interaktionen mit anderen Therapien richten sollte.

Résumé

De nombreuses études indiquent que le processus de vieillissement humain inclut une réduction significative de la sécrétion dʼhormone de croissance en association avec une réduction correspondante du taux plasmatique dʼIGF-1. Ces changements sont accompagnés dʼune réduction de la masse musculaire, de la masse osseuse et de la vitalité ainsi que dʼune perte dʼautres fonctions physiologiques importantes. On trouve en outre un déclin des fonctions mentales et cognitives et une incidence accrue de fragilisation due à lʼâge. Le risque de surpoids et dʼobésité augmente également. Ces changements sont associés à une insulinorésistance, au diabète de type 2 et aux complications cardio-vasculaires. Le présent travail décrit les effets du traitement par lʼhormone de croissance et leur signification en médecine préventive, notamment pour améliorer la qualité de vie, augmenter de la masse corporelle avec réduction de la masse grasse abdominale et considérablement améliorer les fonctions musculo-squelettiques. Ces effets sont associés à une prévention du syndrome cardio-métabolique, à une tension artérielle normalisée par la rhGH, à une réduction des marqueurs thrombotiques et à une normalisation de la fonction endothéliale. Globalement, on peut démontrer que lʼadministration de rhGH pourrait être un excellent instrument dans la prévention des problèmes liés au vieillissement. Une condition première est la sélection des patients selon des critères précis. Cela signifie que lʼindication doit être établie avec prise en compte de lʼobjectif thérapeutique visé, de lʼexclusion des risques et effets indésirables, de lʼâge du patient et des interactions possibles avec dʼautres traitements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha Goldberg PYAF et al (1990) Growth hormone, effects of human growth hormone in men over 60 years old. N Engl J Med 323:1–6

    Article  CAS  PubMed  Google Scholar 

  2. Perls TT, Reisman NR, Olshansky SJ (2005) Provision and distribution of growth hormone for “antiaging”: clinical and legal issues. JAMA 294:2086–2090

    Article  CAS  PubMed  Google Scholar 

  3. Duchaine D (1984) The underground steroid handbook. HLR Technical Books, Venice

    Google Scholar 

  4. Toogood AA, O’Neill PA, Shalet SM (1996) Beyond the somatopause: growth hormone deficiency in adults over the age of 60 years. J Clin Endocrinol Metab 81(2):460–465

    CAS  PubMed  Google Scholar 

  5. Domené HM, Hwa V, Jasper HG, Rosenfeld RG (2011) Acid-labile subunit (ALS) deficiency. Best Pract Res Clin Endocrinol Metab 25(1):101–113

    Article  CAS  PubMed  Google Scholar 

  6. Rajah R, Valentinis B, Cohen P (1997) Insulin-like Growth Factor (IGF)-binding Protein-3 Induces Apoptosis and Mediates the Effects of Transforming Growth Factor-b1 on Programmed Cell Death through a p53- and IGF-independent Mechanism. J Biol Chem 272(18):12181–12188

    Article  CAS  PubMed  Google Scholar 

  7. Redman LM, Ravussin E (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 14(2):275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franceschi C, Campisi J (2014) Chronic Inflammation and its potential contributor to age associated diseases. J Gerontol A Biol Sci 69(Suppl1):4–9

    Article  Google Scholar 

  9. Vottero A, Guzzetti C, Loche S (2013) New aspects of the physiology of the GH-IGF-1 axis. Endocr Dev 24:96–105. https://doi.org/10.1159/000342573

    Article  CAS  PubMed  Google Scholar 

  10. Rudman D, Kutner, Rogers MHCM et al (1981) Impaired growth hormone secretion in the adult population: relation to age and adiposity. J Clin Invest 67(5):1361–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abbasi AA, Drinka PJ, Mattson DE et al (1993) Low circulating levels of insulin-like growth factors and testosterone in chronically institutionalized elderly men. J Am Geriatric Soc 41(9):975–982

    Article  CAS  Google Scholar 

  12. Heiman M, Tinsley F, Mattison J, Hauck S, Bartke A (2003) Body composition of prolactin-, growth hormone- and thyrotropin—deficient ames dwarf mice. Endocrine 20:149–154

    Article  CAS  PubMed  Google Scholar 

  13. Bonkowski MS, Pamenter RW, Rocha JS, Masternak MM, Panici JA, Bartke A (2006) Long-lived growth hormone receptor knockout mice show a delay in age related changes of body composition and bone characteristics. J Gerontol A Biol Sci Med Sci 61:562–567

    Article  PubMed  Google Scholar 

  14. Koizumi AWY, Tuskada M, Kayo T et al (1996) A tumor preventive effect of dietary restriction is antagonized by a high housing temperature through deprivation of torpor. Mech Ageing Dev 92:67–82

    Article  CAS  PubMed  Google Scholar 

  15. Kimura KD, Tissenbaum HA, Lin Y, Rufkum G (1997) daf-2 an Insulin receptor like gene, that regulates longevity and diapause in Caenorhabdis elegans. Science 277:942–946

    Article  CAS  PubMed  Google Scholar 

  16. Janetzka A et al (2016) Clinical and molecular features of laron syndrome, a genetic disorder protecting from cancer. In Vivo (Brooklyn) 30(4):375–381

    Google Scholar 

  17. Francheschi C, Olivieri F, Marchegiani F et al (2005) Genes involved in immune response-inflammation, IGFß1-insulin pathway and response to oxidative stress play a major role in the genetic of human longevity : the lesson of centenarians. Mech Ageing Dev 126:351–361

    Article  CAS  Google Scholar 

  18. Deepak DDC, Javadpur M, Clark D, Perrz Z, Pinbkjnez J, Macfarlane IA (2010) The influence of growth hormone replacement on peripheral inflammatory and cardiovascular risk markers in adults with severe growth hormone deficiency. Growth Horm IGF Res 20:220–225

    Article  CAS  PubMed  Google Scholar 

  19. Yi CCI, Mao SH, Liu H et al (2009) Recombinant human growth hormone improves survival and protect against acute lung injury in murine Staphylococcus aureus sepsis. Inflamm Res 58:855–862

    Article  CAS  PubMed  Google Scholar 

  20. Lihn AS, Pedersen SB, Richelsen B (2005) Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 6(1):13–21

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Masternak MM, Al-Regaiey KA, Bartke A (2007) Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and caloric restricted mice. Endocrinology 148:2845–2853

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Al-Regaiey KA, Masternak MM, Bartke A (2006) Adipocytokines and lipid levels in Ames dwarf and caloric restricted mice. J Gerontol A Biol Sci Med Sci 61A:323–331

    Article  CAS  Google Scholar 

  23. Ratajczak MZ et al (2008) Very small embryonic like (VSEL) stem cells—characterization, development origin and biological significance. Exp Haematol 36(6):742–751. https://doi.org/10.1016/j.exphem.2008.03.010

    Article  CAS  Google Scholar 

  24. Bartke A, Westbrook R, Ratajczak M (2013) Links between growth hormone and aging. Endokrynol Pol 64:46–52

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ratajczak MZ, Zuba-Sturma EK, Wysoczynski M et al (2008) Hunt for pluripotent stem cells-regenerative medicine search for almighty cell. J Autoimmun 30:151–162

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guevarra-Aguirre J, Balasubramaniam P et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3:70ra13

    Article  CAS  Google Scholar 

  27. Ratajczak MZ, Shin DM, Wan W et al (2011) Higher number of stem cells in bone marrow of circulating low IGF-1 level Laron dwarf mouse-novel view on IGF-1 stem cells and aging. Leukemia 25:729–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kucia M, Masternak MM, Liu R et al (2013) The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow residing population of very pluripotent very small embryonic-like stem cells (VSELs). Age 35(2):315. https://doi.org/10.1007/s11357-011-9364-8

    Article  CAS  PubMed  Google Scholar 

  29. Brugts MP, van der Beld AW (2008) Hofland LJ net al. Low circulating insulin-like growth factor −1 bioactivity in elderly men is associated with increased mortality. J Clin Endocrinol Metab 93(7):2515–2522

    Article  CAS  PubMed  Google Scholar 

  30. Laron Z (2004) Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958–2003. J Clin Endocrinol Metab 89(3):1031–1044

    Article  CAS  PubMed  Google Scholar 

  31. Major MJ, Laughlin GA, Kritz-Silverstein D, Wingard DL, Barret-Connor E (2010) Insulin-like growth factor 1 and cancer mortality in older men. J Clin Endocrinol Metab 95(3):1054–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sonksen P (2013) Idiopathic growth hormone deficiency in adults, Ben Johnson and the somatopause. J Clin Endocrinol Metab 98(6):2270–2273

    Article  CAS  PubMed  Google Scholar 

  33. https://www.alz.org/facts/. Zugegriffen: Januar 2018

  34. Johnson MD, Bebb RA, Sirrs SM (2002) Uses of DHEA in aging and other disease states. Ageing Res Rev 1(1):29–41

    Article  CAS  PubMed  Google Scholar 

  35. Suh Y, Atzmon G, Cho MO et al (2008) Functionally significant IGF-1 receptor mutations in centenarians. Proc Nat Acad Sci USA 105(9):3438–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bartke A, Brown-Borg H, Kinney B, Mattison J, Wright C, Hauck St, Coschiogano K, Kopchick J (2000) Growth hormone and aging. J Am Aging Assoc 23(4):219–225

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang H, Han M, Zhang X, Sun X, Ling F (2014) The effect and mechanism of growth hormone replacement on cognitive function in rats with traumatic brain injury. PLoS ONE 9(9):e108518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deak F, Sonntag WE (2012) Aging, synaptic dysfunction and insulin growth factor (IGF)-1. J Gerontol A Biol Sci Med Sci 67(6):611–625

    Article  CAS  PubMed  Google Scholar 

  39. Baker LD, Barsness SM, Borson S et al (2012) Effects of growth hormone releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults. Arch Neurol 69(11):1420–1429

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rizzoli R, Bonjour JP (1999) Malnutrition and osteoporosis. Z Gerontol Geriatr 32(Suppl 1):I31–7

    Article  PubMed  Google Scholar 

  41. Vaessen N, Heutink P, Janssen JA, Witteman JC, Testers L, Hofman A, Lamberts SW, Oostra BA, Pols HA, van Duijn CM (2001) A polymorphism in the gene for IGF-I: functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes 50(3):637–642

    Article  CAS  PubMed  Google Scholar 

  42. Colao A, Marzullo P, Di Somma C, Lombardi G (2001) Growth hormone and the heart. Clin Endocrinol 54(2):137–154

    Article  CAS  Google Scholar 

  43. Menezes Oliveira JL, Marques Santos C, Barreto-Filho JA et al (2006) Lack of evidence of premature atherosclerosis in untreated severe isolated growth hormone (GH) deficiency due to a GH-releasing hormone receptor mutation. J Clin Endocrinol Metab 91(6):2093–2099

    Article  CAS  PubMed  Google Scholar 

  44. Van Bunderen CC, van Nieuwpoort IC, Arwert L et al (2011) Does Growth hormone replacement therapy reduce mortality in adults with GH deficiency? Data from the Dutch registry of GF treatment b in adults. J Clin Endocrinol Metab 96(10):3151–3159

    Article  CAS  PubMed  Google Scholar 

  45. Janssen JA, Stolk RP, Pols HA, Grobbee DE, Lamberts SW (1998) Serum total IGF-I, free IGF-I, and IGFB-1 levels in an elderly population: relation to cardiovascular risk factors and disease. Arterioscler Thromb Vasc Biol 18(2):277–282

    Article  CAS  PubMed  Google Scholar 

  46. Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I (2016) Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 14(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baumgartner RN (2000) Body composition in healthy aging. Ann N Y Acad Sci 904:437–448

    Article  CAS  PubMed  Google Scholar 

  48. Grimberg A, DiVall SA, Polychronakos C, Allen DB, Cohen LE, Quintos JB, Rossi WC, Feudtner C, Murad MH (2016) Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency. Horm Res Paediatr 86:361–397

    Article  CAS  PubMed  Google Scholar 

  49. Milne AC, Potter J, Vivanti A, Avenell A (2009) Protein and energy supplementation in elderly people at risk from malnutrition. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003288.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vandewoude MFJ, Alish AJ, Sauer AC, Hegazi RA (2012) Malnutrition—sarcopenia syndrome: is this the future of Nutritionn screening and assessment for older adults? J Aging Res 2012:Article 651570

    Article  PubMed  Google Scholar 

  51. Walston JD (2012) Sarcopenia in older adults. Curr Opin Rheumatol 24(6):623–627

    Article  PubMed  PubMed Central  Google Scholar 

  52. Castellano G, Affuso F, Conza PD, Fazio S (2009) The GH/IGF-1 axis and heart failure. Curr Cardiol Rev 5(3):203–215. https://doi.org/10.2174/157340309788970306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. J Clin Endocrinol Metab 86:724–731

    Article  CAS  PubMed  Google Scholar 

  54. Mellstrom D, Johnell O, Ljunggren O et al (2006) Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res 21:529–535

    Article  PubMed  Google Scholar 

  55. Morrison JH, Brinton RD et al (2006) Estrogen, menopause, and the aging brain: how basic neuroscience can inform hormone therapy in women. J Neurosci 4(1):10332–10348

    Article  CAS  Google Scholar 

  56. Wend K, Wend P, Krum S (2012) Tissue specific effects of loss of estrogens during menopause and aging. Front Endocrinol 3:19

    Article  Google Scholar 

  57. Baulieu EE et al (2000) Dihydroepiandrosterone(DHEA), DHEA-sulfate, and aging : contribution of the DHEAge study to sociobiomedical issue. Proc Natl Acad Sci USA 97(8):4279–4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Park S, Ham JO, Lee BK (2014) A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr 33(5):900–905

    Article  CAS  PubMed  Google Scholar 

  59. Bartali B, Frongillo EA, Bandinelli S, Lauretani F, Semba RD, Fried LP (2006) Low nutrient intake is an essential component of frailty in older persons. J Gerontol A Biol Sci Med Sci 61:589–593

    Article  PubMed  Google Scholar 

  60. Houston DK, Nicklas BJ, Ding JZ, Harris TB, Tylavsky FA, Newman AB (2008) Dietary intake is associated with lean mass change in older community-dwelling adults: the health aging and body composition (The Health ABC Study) study. Am J Clin Nutr 87:150–155

    Article  CAS  PubMed  Google Scholar 

  61. Burton LA, Sumukadas D (2010) Optimal management of sarcopenia. Clin Interv Aging 5:217–228

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Short KR, Vittone J, Bigelow ML, Proctor DN, Nair KS (2004) Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab 286(1):E92–E101

    Article  CAS  PubMed  Google Scholar 

  63. Frankel JE, Bean JF, Frontera WR (2006) Exercise in the elderly: research and clinical practice. Clin Geriatr Med 22:256

    Article  Google Scholar 

  64. Sipila S, Suominen H (1995) Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol 78:334–340

    Article  CAS  PubMed  Google Scholar 

  65. Fiatarone MA, O’Neill EF, Ryan ND et al (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330:1769–1775

    Article  CAS  PubMed  Google Scholar 

  66. Miljkovic N, Lim J‑Y, Miljkovic I, Frontera WR (2015) Aging of skeletal muscle fibers. Ann Rehabil Med 39(2):155–162

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ferder L, Romano LA, Ercole LB, Stella I, Inserra F (1998) Biomolecular changes in the aging myocardium—the effect of enalapril. Am J Hypertens 11:1297–1304

    Article  CAS  PubMed  Google Scholar 

  68. Maggio M, Ceda GP, Lauretani F et al (2006) Relation of angiotensinconverting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects .65 years of age (the InCHIANTI study). Am J Cardiol 97:1525–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bischoff HA, Borchers M, Gudat F et al (2001) In situ detection of 1,25-dihydroxyvitamin D‑3 receptor in human skeletal muscle tissue. Histochem J 33:19–24

    Article  CAS  PubMed  Google Scholar 

  70. Ziambaras K, DagogoJack S (1997) Reversible muscle weakness in patients with vitamin D deficiency. West J Med 167:435–439

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Visser M, Deeg DJH, Lips P (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (Sarcopenia): the longitudinal aging study Amsterdam. J Clin Endocrinol Metab 88:5766–5772

    Article  CAS  PubMed  Google Scholar 

  72. Annweiler C, Beauchet O, Berrut G et al (2009) Is there an association between serum 25-hydroxyvitamin D concentration and muscle strength among older women? Results from baseline assessment of the EPIDOS study. J Nutr Health Aging 13:90–95

    Article  CAS  PubMed  Google Scholar 

  73. Griggs RC, Kingston W, Jozefowicz RF, Herr BE, Forbes G, Halliday D (1989) Effect of testosterone on muscle mass and muscle protein synthesis. J Appl Physiol 66:489–503

    Article  Google Scholar 

  74. Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S (2004) Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. Endocrinol Metab 89:5255

    Article  CAS  Google Scholar 

  75. Srinivas-Shankar U, Roberts SA, Connolly MJ et al (2010) Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 95:639–650

    Article  CAS  PubMed  Google Scholar 

  76. Urban RJ, Bodenburg YH, Gilkison C et al (1995) Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol 269:E820–E826

    CAS  PubMed  Google Scholar 

  77. Greeves JP, Cable NT, Reilly T, Kingsland C (1999) Changes in muscle strength in women following the menopause: a longitudinal assessment of the efficacy of hormone replacement therapy. Clin Sci 97:79–84

    Article  CAS  Google Scholar 

  78. Dionne I (2000) Sarcopenia and muscle function during menopause and hormone replacement therapy. J Nutr Health Aging 4:156–161

    CAS  PubMed  Google Scholar 

  79. Taaffe DR (2005) Estrogen replacement, muscle composition and physical function: the health ABC study. Med Sci Sports Exerc 37:174–177

    Article  Google Scholar 

  80. Sipila S (2001) Effects of hormone replacement therapy and high impact physical exercise on skeletal muscle in post-menopausal women; a double randomized placebo controlled study. Clin Sci 101:147–151

    Article  CAS  Google Scholar 

  81. Velloso CP (2008) Regulation of muscle mass by growth hormone and IGF-1. Br J Pharmacol 154:557–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Elbornsson M et al (2013) Fifteen years of GH replacement improves body composition and cardiovascular risk factors. Eur J Endocrinol 168(5):745–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goetherstroem G, Bengtson BA, Sunnerhagen KS, Johannson G, Svensson J (2005) The effects of five year growth hormone replacement therapy on muscle strength in elderly hypopituitary patients. Clin Endocrinol 62(1):105–113

    Article  CAS  Google Scholar 

  84. Elbornsson M, Horvath A, Götherström G, Bengtsson BÅ, Johannsson G, Svensson J (2017) Seven years of growth hormone (GH) replacement improves quality of life in hypopituitary patients with adult-onset GH deficiency. Eur J Endocrinol 176(2):99–109

    Article  CAS  PubMed  Google Scholar 

  85. Alexopoulou O, Abs R, Maiter D (2010) Treatment of adult growth hormone deficiency: who, why and how? A review. Acta Clin 65(1):13–22

    Article  CAS  Google Scholar 

  86. Hameed M, Lange KHW et al (2004) The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol 555(Pt1):231–140

    Article  CAS  PubMed  Google Scholar 

  87. Godfrey RJ, Madgwick Z, Whyte GP (2003) The exercise induced growth hormone response in athletes. Sports Med 33(8):599–613

    Article  PubMed  Google Scholar 

  88. Craig BW, Brown R et al (1989) Effects of progressive resistance training on growth hormone and testosterone levels in young and elderly subjects. Mech Ageing Dev 49(2):159–169

    Article  CAS  PubMed  Google Scholar 

  89. Taaffe DR, Pruitt L, Reim J et al (1994) Effect of recombinant human growth hormone on the muscle strength response to resistance exercise in elderly men. J Clin Endocrinol Metab 79:1361–1366

    CAS  PubMed  Google Scholar 

  90. Lange KHW, Andersen JL, Beyer N et al (2002) GH administration changes myosin heavy chain isoforms in skeletal muscle but does not augment muscle strength or hypertrophy, either alone or combined with resistance exercise training in healthy elderly men. J Clin Endocrinol Metab 87:513–523

    Article  CAS  PubMed  Google Scholar 

  91. Ayling CM, Moreland BH, Zanelli JM, Schulster D (1989) Human growth hormone treatment of hypophysectomized rats increases the proportion of type-1 fibres in skeletal muscle. J Endocrinol 123:429–435

    Article  CAS  PubMed  Google Scholar 

  92. Nishiyama K, Sugimoto T, Kaji H, Kanatani M, Kobayashi T, Chihara K (1996) Stimulatory effect of growth hormone on bone resorption and osteoclast differentiation. Endocrinology 137(1):35–41

    Article  CAS  PubMed  Google Scholar 

  93. Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC (1998) Growth hormone and bone. Endocr Rev 19(1):55–79

    CAS  PubMed  Google Scholar 

  94. Wüster C, Abs R, Bengtsson BA, Bennmarker H et al (2001) The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J Bone Miner Res 16(2):398–405

    Article  PubMed  Google Scholar 

  95. Locatelli V, Bianchi VE (2014) Effect of GH/IGF-1 on bone metabolism and osteoporosis. Int J Endocrinol. https://doi.org/10.1155/2014/235060

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mo D, Fleseriu M, Qi R et al (2015) Fracture risk in adult patients treated with Growth Hormone replacement therapy for growth hormone deficiency: a prospective observational cohort study. Lancet 3:331–338

    CAS  Google Scholar 

  97. Bl H, Berg C, Vogel E, Nowak T, Renzig-Koehler K, Mann K, Saller B (2004) Effects of a combination of recombinant human growth hormone with metformin on Glucose metabolism and body composition in patients with metabolic syndrome. Horm Metab Res 36(1):54–61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Klentze.

Ethics declarations

Interessenkonflikt

M. Klentze gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Dieser Beitrag wird auch im Journal für Gynäkologische Endokrinologie/Österreich 2018, https://doi.org/10.1007/s41974-018-0058-4, veröffentlicht

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klentze, M. Der Effekt von Wachstumshormon auf die menschlichen Alterungsprozesse. Teil 1. J. Gynäkol. Endokrinol. 21, 76–84 (2018). https://doi.org/10.1007/s41975-018-0055-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41975-018-0055-z

Schlüsselwörter

Mots clés

Navigation