Skip to main content

Advertisement

Log in

Moderne Behandlungsoptionen des sekundären Hyperparathyreoidismus vor dem Hintergrund kardiovaskulärer Kalzifizierung

Modern treatment options of secondary hyperparathyroidism in the context of cardiovascular calcification

  • Originalien
  • Published:
Journal für Mineralstoffwechsel & Muskuloskelettale Erkrankungen

Zusammenfassung

Der sekundäre Hyperparathyreoidismus (sHPT) hat unbehandelt deletäre Auswirkungen auf verschiedene Organsysteme. Insbesondere die kardiovaskuläre Kalzifizierung als Folge der mit dem sHPT einhergehenden Veränderungen des Knochen- und Mineralstoffwechsels und der zu dessen Therapie eingesetzten medikamentösen Interventionen ist in den Mittelpunkt der Forschung und Behandlungskonzepte gerückt. Sämtliche eingesetzten Therapien sind effektiv im Hinblick auf eine Korrektur der laborchemisch fassbaren Veränderungen im Rahmen des sHPT, aber nur sehr wenige auch klinisch in ihrer Auswirkung auf die kardiovaskuläre Kalzifizierung und patientenbezogene Endpunktdaten (Mortalität, kardiovaskuläre Morbidität) in aussagekräftigen Studien untersucht. Die geringe Anzahl qualitativ hochwertiger randomisierter kontrollierter Studien darf nicht zu einem nihilistischen Ansatz führen. Aufgrund unzureichender Daten ist keine der Therapieoptionen (Phosphatbinder, Substitution mit nativem Vitamin D oder Calcitriol und Analoga, Kalzimimetikum, Parathyreoidektomie) prinzipiell den anderen überlegen, wenn auch patienten- und situationsbezogen Vorteile für die eine oder andere Therapie bestehen. Ein breiteres therapeutisches Fenster verlangt oft eine Kombination dieser Behandlungsoptionen und eine Individualisierung der sHPT-Therapie.

Abstract

Untreated secondary hyperparathyroidism (sHPT) has deleterious effects on various organ systems. In recent years, cardiovascular calcification as a result of sHPT-associated alterations in bone and mineral metabolism and therapeutic interventions used for its treatment has become the focus of research and treatment concepts. All therapies have proven to be effective in terms of correction of the laboratory changes of sHPT, but only very few have also been evaluated clinically in their effect on cardiovascular calcification and patient-related outcome data (mortality, cardiovascular morbidity). Whereas there is only a low number of high-quality randomized controlled trials in the field, this shortcoming should not lead to a nihilistic approach to the relevant clinical problems of patients with sHPT. Nevertheless, because of insufficient clinical data, a single treatment modality, be it phosphorus binders, vitamin D substitution with inactive forms or calcitriol (or vitamin D analogue), calcimimetics, or parathyroidectomy may not claim to be uniformly superior to the others. A wider therapeutic window often prompts the use of a combination of these options and individualization of sHPT management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Cunningham J, Locatelli F, Rodriguez M (2011) Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin J Am Soc Nephrol 6:913–921

    CAS  PubMed  Google Scholar 

  2. Centeno PP, Herberger A, Mun HC, Tu C, Nemeth EF, Chang W et al (2019) Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun 10:4693

    PubMed  PubMed Central  Google Scholar 

  3. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D et al (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342:1478–1483

    CAS  PubMed  Google Scholar 

  4. Raggi P, Boulay A, Chasan-Taber S, Amin N, Dillon M, Burke SK et al (2002) Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 39:695–701

    PubMed  Google Scholar 

  5. Ribeiro S, Ramos A, Brandao A, Rebelo JR, Guerra A, Resina C et al (1998) Cardiac valve calcification in haemodialysis patients: role of calcium-phosphate metabolism. Nephrol Dial Transplant 13:2037–2040

    CAS  PubMed  Google Scholar 

  6. Covic A, Kothawala P, Bernal M, Robbins S, Chalian A, Goldsmith D (2009) Systematic review of the evidence underlying the association between mineral metabolism disturbances and risk of all-cause mortality, cardiovascular mortality and cardiovascular events in chronic kidney disease. Nephrol Dial Transplant 24:1506–1523

    PubMed  Google Scholar 

  7. Hage FG, Venkataraman R, Zoghbi GJ, Perry GJ, DeMattos AM, Iskandrian AE (2009) The scope of coronary heart disease in patients with chronic kidney disease. J Am Coll Cardiol 53:2129–2140

    PubMed  Google Scholar 

  8. Malluche H, Faugere MC (1990) Renal bone disease 1990: an unmet challenge for the nephrologist. Kidney Int 38:193–211

    CAS  PubMed  Google Scholar 

  9. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K et al (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 69:1945–1953

    CAS  PubMed  Google Scholar 

  10. Zitt E, Neyer U (2011) Management of secondary hyperparathyroidism in hemodialysis patients. In: Carpi A (Hrsg) Progress in hemodialysis—from emergent biotechnology to clinical practic: intech, S 331–348

    Google Scholar 

  11. Briet M, Burns KD (2012) Chronic kidney disease and vascular remodelling: molecular mechanisms and clinical implications. Clin Sci (Lond) 123:399–416

    CAS  Google Scholar 

  12. Adeney KL, Siscovick DS, Ix JH, Seliger SL, Shlipak MG, Jenny NS et al (2009) Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol 20:381–387

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cozzolino M, Brancaccio D, Gallieni M, Slatopolsky E (2005) Pathogenesis of vascular calcification in chronic kidney disease. Kidney Int 68:429–436

    CAS  PubMed  Google Scholar 

  14. Vervloet M, Cozzolino M (2017) Vascular calcification in chronic kidney disease: different bricks in the wall? Kidney Int 91:808–817

    PubMed  Google Scholar 

  15. Block GA, Hulbert-Shearon TE, Levin NW, Port FK (1998) Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 31:607–617

    CAS  PubMed  Google Scholar 

  16. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15:2208–2218

    CAS  PubMed  Google Scholar 

  17. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group (2017) KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl (2011) 7:1–59

    Google Scholar 

  18. Barreto FC, Barreto DV, Massy ZA, Drueke TB (2019) Strategies for phosphate control in patients with CKD. Kidney Int Rep 4:1043–1056

    PubMed  PubMed Central  Google Scholar 

  19. Shinaberger CS, Greenland S, Kopple JD, Van Wyck D, Mehrotra R, Kovesdy CP et al (2008) Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease? Am J Clin Nutr 88:1511–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lacson E Jr., Ikizler TA, Lazarus JM, Teng M, Hakim RM (2007) Potential impact of nutritional intervention on end-stage renal disease hospitalization, death, and treatment costs. J Ren Nutr 17:363–371

    PubMed  Google Scholar 

  21. Zitt E, Lamina C, Sturm G, Knoll F, Lins F, Freistatter O et al (2011) Interaction of time-varying albumin and phosphorus on mortality in incident dialysis patients. Clin J Am Soc Nephrol 6:2650–2656

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sherman RA, Mehta O (2009) Dietary phosphorus restriction in dialysis patients: potential impact of processed meat, poultry, and fish products as protein sources. Am J Kidney Dis 54:18–23

    CAS  PubMed  Google Scholar 

  23. Sherman RA, Mehta O (2009) Phosphorus and potassium content of enhanced meat and poultry products: implications for patients who receive dialysis. Clin J Am Soc Nephrol 4:1370–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sullivan C, Sayre SS, Leon JB, Machekano R, Love TE, Porter D et al (2009) Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 301:629–635

    CAS  PubMed  Google Scholar 

  25. Noori N, Kalantar-Zadeh K, Kovesdy CP, Bross R, Benner D, Kopple JD (2010) Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients. Clin J Am Soc Nephrol 5:683–692

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Isakova T, Gutierrez OM, Chang Y, Shah A, Tamez H, Smith K et al (2009) Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol 20:388–396

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M, Spiegel DM et al (2012) Effects of phosphate binders in moderate CKD. J Am Soc Nephrol 23:1407–1415

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldsmith D, Ritz E, Covic A (2004) Vascular calcification: a stiff challenge for the nephrologist: does preventing bone disease cause arterial disease? Kidney Int 66:1315–1333

    PubMed  Google Scholar 

  29. Cozzolino M, Mazzaferro S, Brandenburg V (2011) The treatment of hyperphosphataemia in CKD: calcium-based or calcium-free phosphate binders? Nephrol Dial Transplant 26:402–407

    CAS  PubMed  Google Scholar 

  30. Chertow GM, Burke SK, Raggi P (2002) Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 62:245–252

    CAS  PubMed  Google Scholar 

  31. Block GA, Spiegel DM, Ehrlich J, Mehta R, Lindbergh J, Dreisbach A et al (2005) Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int 68:1815–1824

    CAS  PubMed  Google Scholar 

  32. Navaneethan SD, Palmer SC, Craig JC, Elder GJ, Strippoli GF (2009) Benefits and harms of phosphate binders in CKD: a systematic review of randomized controlled trials. Am J Kidney Dis 54:619–637

    CAS  PubMed  Google Scholar 

  33. Qunibi W, Moustafa M, Muenz LR, He DY, Kessler PD, Diaz-Buxo JA et al (2008) A 1‑year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the calcium acetate renagel evaluation‑2 (CARE-2) study. Am J Kidney Dis 51:952–965

    CAS  PubMed  Google Scholar 

  34. Di Iorio B, Bellasi A, Russo D, INDEPENDENT Study Investigators (2012) Mortality in kidney disease patients treated with phosphate binders: a randomized study. Clin J Am Soc Nephrol 7:487–493

    CAS  PubMed  Google Scholar 

  35. Di Iorio B, Molony D, Bell C, Cucciniello E, Bellizzi V, Russo D et al (2013) Sevelamer versus calcium carbonate in incident hemodialysis patients: results of an open-label 24-month randomized clinical trial. Am J Kidney Dis 62:771–778

    CAS  PubMed  Google Scholar 

  36. Suki WN, Zabaneh R, Cangiano JL, Reed J, Fischer D, Garrett L et al (2007) Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int 72:1130–1137

    CAS  PubMed  Google Scholar 

  37. Leenders NHJ, Vervloet MG (2019) Magnesium: a magic bullet for cardiovascular disease in chronic kidney disease? Nutrients 11(2):E455. https://doi.org/10.3390/nu11020455

    Article  CAS  PubMed  Google Scholar 

  38. Cheng SC, Young DO, Huang Y, Delmez JA, Coyne DW (2008) A randomized, double-blind, placebo-controlled trial of niacinamide for reduction of phosphorus in hemodialysis patients. Clin J Am Soc Nephrol 3:1131–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaesler N, Goettsch C, Weis D, Schurgers L, Hellmann B, Floege J et al (2020) Magnesium but not nicotinamide prevents vascular calcification in experimental uraemia. Nephrol Dial Transplant 35(1):65–73. https://doi.org/10.1093/ndt/gfy410

    Article  PubMed  Google Scholar 

  40. Lenglet A, Liabeuf S, Esper NE, Brisset S, Mansour J, Lemaire-Hurtel AS et al (2017) Efficacy and safety of nicotinamide in haemodialysis patients: the NICOREN study. Nephrol Dial Transplant 32:1597

    PubMed  Google Scholar 

  41. Block GA, Rosenbaum DP, Leonsson-Zachrisson M, Astrand M, Johansson S, Knutsson M et al (2017) Effect of tenapanor on serum phosphate in patients receiving hemodialysis. J Am Soc Nephrol 28:1933–1942

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Block GA, Rosenbaum DP, Yan A, Chertow GM (2019) Efficacy and safety of tenapanor in patients with hyperphosphatemia receiving maintenance hemodialysis: a randomized phase 3 trial. J Am Soc Nephrol 30:641–652

    PubMed  PubMed Central  Google Scholar 

  43. Friedl C, Zitt E (2017) Vitamin D prohormone in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Int J Nephrol Renovasc Dis 10:109–122

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zitt E, Sprenger-Mahr H, Mundle M, Lhotta K (2015) Efficacy and safety of body weight-adapted oral cholecalciferol substitution in dialysis patients with vitamin D deficiency. BMC Nephrol 16:128

    PubMed  PubMed Central  Google Scholar 

  45. Sprague SM, Crawford PW, Melnick JZ, Strugnell SA, Ali S, Mangoo-Karim R et al (2016) Use of extended-release calcifediol to treat secondary hyperparathyroidism in stages 3 and 4 chronic kidney disease. Am J Nephrol 44:316–325

    CAS  PubMed  Google Scholar 

  46. Naves-Diaz M, Alvarez-Hernandez D, Passlick-Deetjen J, Guinsburg A, Marelli C, Rodriguez-Puyol D et al (2008) Oral active vitamin D is associated with improved survival in hemodialysis patients. Kidney Int 74:1070–1078

    CAS  PubMed  Google Scholar 

  47. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R (2003) Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med 349:446–456

    CAS  PubMed  Google Scholar 

  48. Teng M, Wolf M, Ofsthun MN, Lazarus JM, Hernan MA, Camargo CA Jr. et al (2005) Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol 16:1115–1125

    CAS  PubMed  Google Scholar 

  49. Tentori F, Hunt WC, Stidley CA, Rohrscheib MR, Bedrick EJ, Meyer KB et al (2006) Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int 70:1858–1865

    CAS  PubMed  Google Scholar 

  50. Koller H, Zitt E, Staudacher G, Neyer U, Mayer G, Rosenkranz AR (2004) Variable parathyroid hormone(1-84)/carboxylterminal PTH ratios detected by 4 novel parathyroid hormone assays. Clin Nephrol 61:337–343

    CAS  PubMed  Google Scholar 

  51. Souberbielle JC, Roth H, Fouque DP (2010) Parathyroid hormone measurement in CKD. Kidney Int 77:93–100

    CAS  PubMed  Google Scholar 

  52. Floege J, Kim J, Ireland E, Chazot C, Drueke T, de Francisco A et al (2011) Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant 26(6):1948–1955. https://doi.org/10.1093/ndt/gfq219

    Article  CAS  PubMed  Google Scholar 

  53. Chin J, Miller SC, Wada M, Nagano N, Nemeth EF, Fox J (2000) Activation of the calcium receptor by a calcimimetic compound halts the progression of secondary hyperparathyroidism in uremic rats. J Am Soc Nephrol 11:903–911

    CAS  PubMed  Google Scholar 

  54. Meola M, Petrucci I, Barsotti G (2009) Long-term treatment with cinacalcet and conventional therapy reduces parathyroid hyperplasia in severe secondary hyperparathyroidism. Nephrol Dial Transplant 24:982–989

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nemeth EF, Steffey ME, Hammerland LG, Hung BC, Van Wagenen BC, DelMar EG et al (1998) Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc Natl Acad Sci U S A 95:4040–4045

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Urena P, Jacobson SH, Zitt E, Vervloet M, Malberti F, Ashman N et al (2009) Cinacalcet and achievement of the NKF/K-DOQI recommended target values for bone and mineral metabolism in real-world clinical practice—the ECHO observational study. Nephrol Dial Transplant 24:2852–2859

    CAS  PubMed  Google Scholar 

  57. Block GA, Bushinsky DA, Cunningham J, Drueke TB, Ketteler M, Kewalramani R et al (2017) Effect of etelcalcetide vs placebo on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: two randomized clinical trials. JAMA 317:146–155

    CAS  PubMed  Google Scholar 

  58. Block GA, Martin KJ, de Francisco AL, Turner SA, Avram MM, Suranyi MG et al (2004) Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 350:1516–1525

    CAS  PubMed  Google Scholar 

  59. Zitt E, Fouque D, Jacobson SH, Malberti F, Ryba M, Urena P et al (2013) Serum phosphorus reduction in dialysis patients treated with cinacalcet for secondary hyperparathyroidism results mainly from parathyroid hormone reduction. Clin Kidney J 6:287–294

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sprague SM, Evenepoel P, Curzi MP, Gonzalez MT, Husserl FE, Kopyt N et al (2009) Simultaneous control of PTH and CaxP Is sustained over three years of treatment with cinacalcet HCl. Clin J Am Soc Nephrol 4:1465–1476

    PubMed  PubMed Central  Google Scholar 

  61. Cunningham J, Danese M, Olson K, Klassen P, Chertow GM (2005) Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int 68:1793–1800

    CAS  PubMed  Google Scholar 

  62. Block GA, Zaun D, Smits G, Persky M, Brillhart S, Nieman K et al (2010) Cinacalcet hydrochloride treatment significantly improves all-cause and cardiovascular survival in a large cohort of hemodialysis patients. Kidney Int 78:578–589

    CAS  PubMed  Google Scholar 

  63. Friedl C, Reibnegger G, Kramar R, Zitt E, Pilz S, Mann JFE et al (2017) Mortality in dialysis patients with cinacalcet use: a large observational registry study. Eur J Intern Med 42:89–95

    CAS  PubMed  Google Scholar 

  64. EVOLVE Trial Investigators, Chertow GM, Block GA, Correa-Rotter R, Drueke TB, Floege J et al (2012) Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med 367:2482–2494

    Google Scholar 

  65. Aladren Regidor MJ (2009) Cinacalcet reduces vascular and soft tissue calcification in secondary hyperparathyroidism (SHPT) in hemodialysis patients. Clin Nephrol 71:207–213

    CAS  PubMed  Google Scholar 

  66. Henley C, Colloton M, Cattley RC, Shatzen E, Towler DA, Lacey D et al (2005) 1,25-Dihydroxyvitamin D3 but not cinacalcet Hcl (sensipar/mimpara) treatment mediates aortic calcification in a rat model of secondary hyperparathyroidism. Nephrol Dial Transplant 20:1370–1377

    CAS  PubMed  Google Scholar 

  67. Lopez I, Mendoza FJ, Guerrero F, Almaden Y, Henley C, Aguilera-Tejero E et al (2009) The calcimimetic AMG 641 accelerates regression of extraosseous calcification in uremic rats. Am J Physiol Renal Physiol 296:F1376–1385

    CAS  PubMed  Google Scholar 

  68. Raggi P, Chertow GM, Torres PU, Csiky B, Naso A, Nossuli K et al (2011) The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant 26:1327–1339

    CAS  PubMed  Google Scholar 

  69. Block GA, Bushinsky DA, Cheng S, Cunningham J, Dehmel B, Drueke TB et al (2017) Effect of etelcalcetide vs cinacalcet on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: a randomized clinical trial. JAMA 317:156–164

    CAS  PubMed  Google Scholar 

  70. Yu L, Tomlinson JE, Alexander ST, Hensley K, Han CY, Dwyer D et al (2017) Etelcalcetide, a novel calcimimetic, prevents vascular calcification in a rat model of renal insufficiency with secondary hyperparathyroidism. Calcif Tissue Int 101:641–653

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Friedl C, Zitt E (2018) Role of etelcalcetide in the management of secondary hyperparathyroidism in hemodialysis patients: a review on current data and place in therapy. Drug Des Devel Ther 12:1589–1598

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zitt E, Konig M, Vychytil A, Auinger M, Wallner M, Lingenhel G et al (2013) Use of sodium thiosulphate in a multi-interventional setting for the treatment of calciphylaxis in dialysis patients. Nephrol Dial Transplant 28:1232–1240

    CAS  PubMed  Google Scholar 

  73. Zitt E, Rix M, Urena Torres P, Fouque D, Jacobson SH, Petavy F et al (2011) Effectiveness of cinacalcet in patients with recurrent/persistent secondary hyperparathyroidism following parathyroidectomy: results of the ECHO study. Nephrol Dial Transplant 26(6):1956–1961. https://doi.org/10.1093/ndt/gfq641

    Article  CAS  PubMed  Google Scholar 

  74. Evenepoel P, Claes K, Kuypers D, Maes B, Bammens B, Vanrenterghem Y (2004) Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-centre study. Nephrol Dial Transplant 19:1281–1287

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Zitt.

Ethics declarations

Interessenkonflikt

E. Zitt gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Aktualisierung von: Zitt E (2014) Moderne Behandlungsoptionen des sekundären Hyperparathyreoidismus vor dem Hintergrund kardiovaskulärer Kalzifizierung. J Miner Stoffw Muskuloskelet Erkr 21(1):14–19

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitt, E. Moderne Behandlungsoptionen des sekundären Hyperparathyreoidismus vor dem Hintergrund kardiovaskulärer Kalzifizierung. J. Miner. Stoffwechs. Muskuloskelet. Erkrank. 27, 63–71 (2020). https://doi.org/10.1007/s41970-020-00098-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41970-020-00098-7

Schlüsselwörter

Keywords

Navigation