Skip to main content
Log in

Hormonpumpen

Medical pumps

  • Originalien
  • Published:
Journal für Klinische Endokrinologie und Stoffwechsel Aims and scope

Zusammenfassung

Medizinische Pumpensysteme ermöglichen die akkurate Gabe eines Medikaments in Form einer kontinuierlichen Infusion und/oder rezidivierenden Bolusgabe über einen Katheter in das subkutane Fettgewebe, nach intravenös oder auch intrathekal. Sie erleichtern den Alltag der PatientInnen, da andernfalls die häufige Selbstinjektion des Medikaments notwendig wäre, was nicht nur schmerzbehaftet sein kann, sondern tagsüber sowie unter Umständen auch nachts eine aktive Handlung des Patienten erfordert. Darüber hinaus können Hormonpumpen den physiologischen Stoffwechselprozess oft besser nachahmen, was für manche endokrine Erkrankungen eine Behandlung überhaupt erst ermöglicht. In diesem Review konzentrieren wir uns auf die Hauptanwendungsgebiete subkutaner Hormonpumpensysteme, nämlich den Diabetes mellitus Typ 1 (T1DM) sowie Anwendungen in der Gynäkologie und Reproduktionsmedizin, insbesondere bei hypothalamischer Insuffizienz.

Abstract

Medical pumps offer the possibility of applying accurate doses of a certain medication by continuous infusion and/or multiple boli via a subcutaneous, intravenous, or intrathecal route. Effortless dosing facilitates the patient’s daily routine, as otherwise frequent self-injection of the drug would be necessary, which can not only be painful but also requires action by the patient during the day and possibly at night. Moreover, hormone pumps more tightly imitate the physiological secretion pattern, which is crucial for optimized treatment. In this review, we discuss the main fields of application of subcutaneously administering hormone pumps, namely for type 1 diabetes mellitus and applications in gynecology and reproductive medicine, especially in hypothalamic insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ostrovski I et al (2020) Analysis of prevalence, magnitude and timing of the dawn phenomenon in adults and adolescents with type 1 diabetes: descriptive analysis of 2 insulin pump trials. Can J Diabetes 44:229

    Article  PubMed  Google Scholar 

  2. Thomas A (2010) Diabetes und Technologie, Geschichte der Insulinpumpentherapie

    Google Scholar 

  3. Battelino T et al (2019) Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care 42(8):1593–1603. https://doi.org/10.2337/dci19-0028

    Article  PubMed  PubMed Central  Google Scholar 

  4. Agarwal S, Cappola AR (2020) Continuous glucose monitoring in adolescent, young adult, and older patients with type 1 diabetes. JAMA 323(23):2384–2385. https://doi.org/10.1001/jama.2020.7058

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ly TT, Nicholas JA, Retterath A et al (2013) Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA 310:1240–1247

    Article  CAS  PubMed  Google Scholar 

  6. Thomas MG et al (2021) Optimizing type 1 diabetes after multiple daily injections and capillary blood monitoring: pump or sensor first? A meta-analysis using pooled differences in outcome measures. Diabetes Obes Metab 23(11):2521–2528. https://doi.org/10.1111/dom.14498

    Article  PubMed  Google Scholar 

  7. Bergenstal RM et al (2013) Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med 369:224–232

    Article  CAS  PubMed  Google Scholar 

  8. Forlenza GP et al (2018) Predictive low-glucose suspend reduces hypoglycemia in adults, adolescents, and children with type 1 diabetes in an at-home randomized crossover study: results of the PROLOG trial. Diabetes Care 41:2155–2161

    Article  CAS  PubMed  Google Scholar 

  9. Walsh J, Roberts R, Heinemann L (2014) Confusion regarding duration of insulin action: a potential source for major insulin dose errors by bolus calculators. J Diabetes Sci Technol 8(1):170–178. https://doi.org/10.1177/1932296813514319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klupa T et al (2011) The dual-wave bolus feature in type 1 diabetes adult users of insulin pumps. Acta Diabetol 48(1):11–14. https://doi.org/10.1007/s00592-009-0173-9

    Article  CAS  PubMed  Google Scholar 

  11. Ramotowska A, Golicki D, Dżygało K, Szypowska A (2013) The effect of using the insulin pump bolus calculator compared to standard insulin dosage calculations in patients with type 1 diabetes mellitus—systematic review. Exp Clin Endocrinol Diabetes 121(5):248–254. https://doi.org/10.1055/s-0032-1331708

    Article  CAS  PubMed  Google Scholar 

  12. Bergenstal RM et al (2016) Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA 316:1407–1408

    Article  PubMed  Google Scholar 

  13. Brown SA et al (2019) Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N Engl J Med 381:1707–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lal RA, Basina M, Maahs DM et al (2019) One year clinical experience of the first commercial hybrid closed-loop system. Diabetes Care 42:2190–2196

    Article  PubMed  PubMed Central  Google Scholar 

  15. Garg SK et al (2017) Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther 19:155–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weisman A et al (2017) Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol 5(7):501–512. https://doi.org/10.1016/S2213-8587(17)30167-5

    Article  CAS  PubMed  Google Scholar 

  17. Ekhlaspour L et al (2022) Outcomes in baseline hemoglobin A1C subgroups in the international diabetes closed-loop 18 trial. Diabetes Technol Ther 24(8):588–591

    Article  CAS  PubMed  Google Scholar 

  18. Quemerais MA et al (2014) Preliminary evaluation of a new semi-closed-loop insulin therapy system over the prandial period in adult patients with type 1 diabetes: the WP6.0 Diabeloop study. J Diabetes Sci Technol 8(6):1177–1184. https://doi.org/10.1177/1932296814545668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nimri R et al (2020) Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat Med 26(9):1380–1384. https://doi.org/10.1038/s41591-020-1045-7

    Article  CAS  PubMed  Google Scholar 

  20. Jennings P, Hussain S (2020) Do-it-yourself artificial pancreas systems: a review of the emerging evidence and insights for healthcare professionals. J Diabetes Sci Technol 14:868–877

    Article  PubMed  Google Scholar 

  21. Braune K, OPEN International Healthcare Professional Network and OPEN Legal Advisory Group et al (2022) Open-source automated insulin delivery: international consensus statement and practical guidance for health-care professionals. Lancet Diabetes Endocrinol 10(1):58–74. https://doi.org/10.1016/S2213-8587(21)00267-9 (Erratum in: Lancet Diabetes Endocrinol. 2022 Jan;10(1):e1)

    Article  PubMed  Google Scholar 

  22. Blauw H et al (2021) Fully closed loop glucose control with a bihormonal artificial pancreas in adults with type 1 diabetes: an outpatient, randomized, crossover trial. Diabetes Care 44(3):836–838. https://doi.org/10.2337/dc20-2106

    Article  PubMed  Google Scholar 

  23. Castellanos LE et al (2021) Performance of the insulin-only ilet bionic pancreas 17 and the bihormonal ilet using dasiglucagon in adults with type 1 diabetes in a home-use 18 setting. Diabetes Care 44(6):e118–e120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haidar A et al (2020) A novel dual-20 hormone insulin-and-pramlintide artificial pancreas for type 1 diabetes: a randomized 21 controlled crossover trial. Diabetes Care 43(3):597–606

    Article  CAS  PubMed  Google Scholar 

  25. Steineck I, Swedish National Diabetes Register et al (2015) Insulin pump therapy, multiple daily injections, and cardiovascular mortality in 18,168 people with type 1 diabetes: observational study. BMJ 350:h3234. https://doi.org/10.1136/bmj.h3234

    Article  PubMed  PubMed Central  Google Scholar 

  26. Holesh JE et al (2022) Physiology, ovulation. StatPearls, Treasure Island (FL)

    Google Scholar 

  27. Crowley WF Jr et al (1981) Therapeutic use of pituitary desensitization with a long-acting lhrh agonist: a potential new treatment for idiopathic precocious puberty. J Clin Endocrinol Metab 52:370–372

    Article  PubMed  Google Scholar 

  28. Topaloglu AK et al (2009) TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 41:354–358

    Article  CAS  PubMed  Google Scholar 

  29. Herbison AE (2018) The gonadotropin-releasing hormone pulse generator. Endocrinology 159(11):3723–3736. https://doi.org/10.1210/en.2018-00653

    Article  CAS  PubMed  Google Scholar 

  30. Whitlock KE (2005) Origin and development of GnRH neurons. Trends Endocrinol Metab 16:145–151

    Article  CAS  PubMed  Google Scholar 

  31. Schwanzel-Fukuda M (1989) Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Brain Res Mol Brain Res 6:311–326

    Article  CAS  PubMed  Google Scholar 

  32. Soussi-Yanicostas N et al (1998) Anosmin‑1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner. J Cell Sci 111(19):2953–2965

    Article  CAS  PubMed  Google Scholar 

  33. Caron P et al (1999) Resistance of hypogonadic patients with mutated GnRH receptor genes to pulsatile GnRH administration. J Clin Endocrinol Metab 84:990–996

    Article  CAS  PubMed  Google Scholar 

  34. Sykiotis GP et al (2010) Congenital idiopathic hypogonadotropic hypogonadism: evidence of defects in the hypothalamus, pituitary, and testes. J Clin Endocrinol Metab 95:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ankarberg-Lindgren C et al (2001) Nocturnal application of transdermal estradiol patches produces levels of estradiol that mimic those seen at the onset of spontaneous puberty in girls. J Clin Endocrinol Metab 86:3039–3044

    CAS  PubMed  Google Scholar 

  36. Bergadá I, Bergadá C (1995) Long term treatment with low dose testosterone in constitutional delay of growth and puberty: effect on bone age maturation and pubertal progression. J Pediatr Endocrinol Metab 8:117–122

    Article  PubMed  Google Scholar 

  37. Balasubramanian R, Crowley WF Jr. (2007) Isolated gonadotropin-releasing hormone (GnRH) deficiency. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A (Hrsg) GeneReviews. University of Washington, Seattle

    Google Scholar 

  38. Martin KA et al (1993) Comparison of exogenous gonadotropins and pulsatile gonadotropin-releasing hormone for induction of ovulation in hypogonadotropic amenorrhea. J Clin Endocrinol Metab 77:125–129

    CAS  PubMed  Google Scholar 

  39. Suh BY et al (1988) Hypercortisolism in patients with functional hypothalamicamenorrhea. J Clin Endocrinol Metab 66:733–739

    Article  CAS  PubMed  Google Scholar 

  40. Sophie Gibson ME et al (2020) Where have the periods gone? The evaluation and management of functional hypothalamic amenorrhea. J Clin Res Pediatr Endocrinol 12(1):18–27. https://doi.org/10.4274/jcrpe.galenos.2019.2019.S0178

    Article  PubMed  PubMed Central  Google Scholar 

  41. Couzinet B et al (1999) Functional hypothalamic amenorrhoea: a partial and reversible gonadotrophin deficiency of nutritional origin. Clin Endocrinol (Oxf) 50:229–235

    Article  CAS  PubMed  Google Scholar 

  42. Bomba M et al (2007) Endocrine profiles and neuropsychologic correlates of functional hypothalamic amenorrhea in adolescents. Fertil Steril 87:876–885

    Article  CAS  PubMed  Google Scholar 

  43. Golden NH, Carlson JL (2008) The pathophysiology of amenorrhea in the adolescent. Ann N Y Acad Sci 1135:163–178

    Article  PubMed  Google Scholar 

  44. Gordon CM (2010) Clinical practice. Functional hypothalamic amenorrhea. N Engl J Med 363:365–371

    Article  CAS  PubMed  Google Scholar 

  45. Shufelt CL et al (2017) Hypothalamic amenorrhea and the long-term health consequences. Semin Reprod Med 35(3):256–262. https://doi.org/10.1055/s-0037-1603581

    Article  PubMed  PubMed Central  Google Scholar 

  46. Martin KA et al (1993) Comparison of exogenous gonadotropins and pulsatile gonadotropin-releasing hormone for induction of ovulation in hypogonadotropic amenorrhea. J Clin Endocrinol Metab 77:125–129

    CAS  PubMed  Google Scholar 

  47. Dumont A et al (2016) Comparison between pulsatile GnRH therapy and gonadotropins for ovulation induction in women with both functional hypothalamic amenorrhea and polycystic ovarian morphology. Gynecol Endocrinol 32:999–1004

    Article  CAS  PubMed  Google Scholar 

  48. Wildt L et al (2019) Pulsatile GnRH-Therapie. In: Diedrich K, Ludwig M, Griesinger G (Hrsg) Reproduktionsmedizin. Springer, Berlin, Heidelberg

    Google Scholar 

  49. Begon S et al (1993) Pulsatile administration of gonadotrophin releasing hormone as a diagnostic tool to distinguish hypothalamic from pituitary hypogonadism following neurosurgery. Hum Reprod 8(2):200–203

    Article  PubMed  Google Scholar 

  50. Leyendecker G, Struve T, Plotz EJ (1980) Induction of ovulation with chronic intermittent (pulsatile) administration of LH-RH in women with hypothalamic and hyperprolactinemic amenorrhea. Arch Gynecol 229:177–190. https://doi.org/10.1007/BF02108310

    Article  CAS  PubMed  Google Scholar 

  51. Liu Z et al (2015) Effectiveness and safety of pulsatile GnRH pump therapy on female patients with IHH. Zhonghua Yi Xue Za Zhi 95(42):3432–3435

    CAS  PubMed  Google Scholar 

  52. Hao M et al (2021) Efficacy and safety of pulsatile gonadotropin-releasing hormone therapy in patients with congenital hypogonadotropic hypogonadism: a multicentre clinical study. Ann Transl Med 9(12):962. https://doi.org/10.21037/atm-21-1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tranoulis A et al (2018) Efficacy and safety of pulsatile gonadotropin-releasing hormone therapy among patients with idiopathic and functional hypothalamic amenorrhea: a systematic review of the literature and a meta-analysis. Fertil Steril 109:708–719

    Article  CAS  PubMed  Google Scholar 

  54. Filicori M et al (1991) Ovulation induction with pulsatile gonadotropin-releasing hormone: technical modalities and clinical perspectives. Fertil Steril 56:1–13

    Article  CAS  PubMed  Google Scholar 

  55. Filicori M, Cognigni GE (2018) Ovulation induction with pulsatile gonadotropin releasing hormone: missing in action. Fertil Steril 109(4):621–622. https://doi.org/10.1016/j.fertnstert.2018.01.023

    Article  CAS  PubMed  Google Scholar 

  56. Filicori M et al (1994) Treatment of anovulation with pulsatile gonadotropin-releasing hormone: prognostic factors and clinical results in 600 cycles. J Clin Endocrinol Metab 79:1215–1220

    CAS  PubMed  Google Scholar 

  57. Filicori M et al (1988) Gonadotropin-releasing hormone (GnRH) analog suppression renders polycystic ovarian disease patients more susceptible to ovulation induction with pulsatile GnRH. J Clin Endocrinol Metab 66(2):327–333. https://doi.org/10.1210/jcem-66-2-327

    Article  CAS  PubMed  Google Scholar 

  58. Homburg R et al (1989) One hundred pregnancies after treatment with pulsatile luteinising hormone releasing hormone to induce ovulation. BMJ 298(6676):809–812. https://doi.org/10.1136/bmj.298.6676.809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Castillo JC et al (2020) Gonadotropin-releasing hormone agonist ovulation trigger-beyond OHSS prevention. Ups J Med Sci 125(2):138–143. https://doi.org/10.1080/03009734.2020.1737599

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu L et al (1988) Two-year comparison of testicular responses to pulsatile gonadotropin-releasing hormone and exogenous gonadotropins from the inception of therapy in men with isolated hypogonadotropic hypogonadism. J Clin Endocrinol Metab 67(6):1140–1145. https://doi.org/10.1210/jcem-67-6-1140

    Article  CAS  PubMed  Google Scholar 

  61. Pitteloud N et al (2002) Predictors of outcome of long-term GnRH therapy in men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 87:4128–4136

    Article  CAS  PubMed  Google Scholar 

  62. Rastrelli G et al (2014) Factors affecting spermatogenesis upon gonadotropin-replacement therapy: a meta-analytic study. Andrology 2(6):794–808

    Article  CAS  PubMed  Google Scholar 

  63. Wildt L, Böttcher B, Leyendecker G (2019) Pulsatile GnRH-Therapie. In: Diedrich K, Ludwig M, Griesinger G (Hrsg) Reproduktionsmedizin. Springer, Berlin, Heidelberg, S 1–14 https://doi.org/10.1007/978-3-662-55601-6_16-1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Stulnig.

Ethics declarations

Interessenkonflikt

B. Reinhart-Steininger, I. Schütz-Fuhrmann und T.M. Stulnig geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinhart-Steininger, B., Schütz-Fuhrmann, I. & Stulnig, T.M. Hormonpumpen. J. Klin. Endokrinol. Stoffw. 16, 17–25 (2023). https://doi.org/10.1007/s41969-022-00184-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41969-022-00184-x

Schlüsselwörter

Keywords

Navigation