Skip to main content
Log in

Multi-learning rate optimization spiking neural P systems for solving the discrete optimization problems

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

To further improve the performance of optimization spiking neural P system (OSNPS), a multi-learning rate optimization spiking neural P system (MLOSNPS) is proposed. More specifically, by borrowing the distributed population structure of DAOSNPS, the distributed population structure with multiple subpopulations, single migration individual and information exchange considering convergence and diversity is adopted in MLOSNPS. In addition, three different learning rates in OSNPS, AOSNPS and DAOSNPS are used at different evolutionary stages in MLOSNPS. The experimental results in 0/1 knapsack problems show that MLOSNPS achieves a better balance between exploration and exploitation than OSNPS, AOSNPS and DAOSNPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pan, L., Păun, G., & Zhang, G. (2019). Foreword: Starting JMC. Journal of Membrane Computing, 1(1), 1–2.

    Article  Google Scholar 

  2. Zhang, G. (2021). Membrane computing. International Journal of Parallel, Emergent and Distributed Systems, 36(1), 1–2.

    Article  Google Scholar 

  3. Leporati, A., Manzoni, L., Claudio, Z., Porreca, A., & Zandron, C. (2020). A Turing machine simulation by p systems without charges. Journal of Membrane Computing, 2(2), 71–79.

    Article  MathSciNet  MATH  Google Scholar 

  4. Rong, H., Duan, Y., & Zhang, G. (2022). A bibliometric analysis of membrane computing (1998–2019). Journal of Membrane Computing, 4(2), 177–207.

    Article  MathSciNet  Google Scholar 

  5. Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    Article  MathSciNet  MATH  Google Scholar 

  6. Alhazov, A. (2010). Minimal parallelism and number of membrane polarizations. Computer Science Journal of Moldova, 18(18), 149–170.

    MathSciNet  MATH  Google Scholar 

  7. Pan, L., Orellana-Martín, D., Song, B., & Pérez-Jiménez, M. J. (2020). Cell-like P systems with polarizations and minimal rules. Theoretical Computer Science, 816, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  8. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2019). Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems. Journal of Membrane Computing, 1(1), 1–2.

    MathSciNet  MATH  Google Scholar 

  9. Song, B., Luo, X., Peng, H., Valencia-Cabrera, L., & Zeng, X. (2021). The computational power of cell-like P systems with one protein on membrane. Journal of Membrane Computing, 2(4), 332–340.

    Article  MathSciNet  MATH  Google Scholar 

  10. Freund, R., Păun, G., & Pérez-Jiménez, M. J. (2005). Tissue P systems with channel states. Theoretical Computer Science, 330(1), 101–116.

    Article  MathSciNet  MATH  Google Scholar 

  11. Song, B., Zhang, C., & Pan, L. (2017). Tissue-like P systems with evolutional symport/antiport rules. Information Science, 378, 177–193.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ceterchi, R., Orellana-Martín, D., & Zhang, G. (2021). Division rules for tissue P systems inspired by space filling curves. Journal of Membrane Computing, 3(2), 105–115.

    Article  MathSciNet  MATH  Google Scholar 

  13. Valencia-Cabrera, L., & Song, B. (2020). Tissue P systems with promoter simulation with MeCoSim and p-Lingua framework. Journal of Membrane Computing, 2(2), 95–107.

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, G., Zhang, X., Rong, H., Paul, P., Zhu, M., Neri, F., & Ong, Y. (2022). A layered spiking neural system for classification problems. International Journal of Neural Systems, 32(8), 1–15.

    Article  Google Scholar 

  15. Ren, T., Cabarle, F., & Adorna, H. (2019). Generating context-free languages using spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(8), 161–177.

    MathSciNet  MATH  Google Scholar 

  16. Jiang, Y., Su, Y., & Luo, F. (2019). An improved universal spiking neural P system with generalized use of rules. Journal of Membrane Computing, 1(8), 270–278.

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, G., Pérez-Jiménez, M. J., Riscos-Núñez, A., Verlan, S., Konur, S., Hinze, T., & Gheorghe, M. (2021). Membrane computing models: Implementations. Springer.

  18. Lv, Z., Yang, Q., Peng, H., Song, X., & Wang, J. (2021). Computational power of sequential spiking neural P systems with multiple channels. Journal of Membrane Computing, 3(2), 270–283.

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, G., Shang, Z., Verlan, S., Martínez-Amor, M., Yuan, C., Valencia-Cabrer, L., & Pérez-Jiménez, M. J. (2020). An overview of hardware implementation of membrane computing models. ACM Computing Surveys, 53(4), 1–38.

    Google Scholar 

  20. Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., & Sosík, P. (2019). P colonies. Journal of Membrane Computing, 1(3), 178–197.

    Article  MathSciNet  MATH  Google Scholar 

  21. Xue, J., Wang, Y., Kong, D., Wu, F., & Liu, X. (2021). Deep hybrid neural-like P systems for multiorgan segmentation in head and neck CT/MR images. Expert Systems with Applications, 168(27), 114446–110.

    Article  Google Scholar 

  22. Hu, J., Wang, Y., Kong, D., Yan, F., & Xue, J. (2020). Hypergraph membrane system based F2 fully convolutional neural network for brain tumor segmentation. Applied Soft Computing, 94, 106454–110.

    Article  Google Scholar 

  23. Li, B., Peng, H., Luo, X., Wang, J., & Riscos-Núñez, A. (2020). Medical image fusion method based on coupled neural P systems in nonsubsampled shearlet transform domain. International Journal of Neural Systems, 31(1), 2050050–117.

    Article  Google Scholar 

  24. Wang, X., Zhang, G., Gou, X., Paul, P., Neri, F., Rong, H., Yang, Q., & Zhang, H. (2021). Multi-behaviors coordination controller design with enzymatic numerical P systems for robots. Integrated Computer Aided Engineering, 28(2), 119–150.

    Article  Google Scholar 

  25. Perez-Hurtado, I., Martınez-del-Amor, M. A., Zhang, G., Neri, F., & Pérez-Jiménez, M. J. (2020). A membrane parallel rapidly-exploring random tree algorithm for robotic motion planning. Integrated Computer Aided Engineering, 27(2), 121–138.

    Article  Google Scholar 

  26. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., Pérez-Jiménez, M. J., & Cheng, J. (2015). Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems, 30(3), 1182–1194.

    Article  Google Scholar 

  27. Rong, H., Yi, K., Zhang, G., Dong, J., Paul, P., & Huang, Z. (2019). Automatic implementation of fuzzy reasoning spiking neural P systems for diagnosing faults in complex power systems. Complex, 2019, 2635714–1263571416.

    Article  Google Scholar 

  28. Zhang, G., Zhou, F., Huang, X., Cheng, J., Gheorghe, M., Ipate, F., & Lefticaru, R. (2012). A novel membrane algorithm based on particle swarm optimization for solving broadcasting problems. Journal of Universal Computer Science, 18(13), 1821–1841.

    MATH  Google Scholar 

  29. Zhang, G., Pérez-Jiménez, M.J., & Gheorghe, M. (2017). Real-life applications with membrane computing. Springer.

    Book  MATH  Google Scholar 

  30. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2), 279–308.

    MathSciNet  MATH  Google Scholar 

  31. Pan, L., Paun, G., Zhang, G., & Neri, F. (2017). Spiking neural P systems with communication on request. International Journal of Neural Systems, 27(8), 1750042–1175004213.

    Article  Google Scholar 

  32. Zhang, G., Rong, H., Paul, P., He, Y., Neri, F., & Pérez-Jiménez, M. J. (2021). A complete arithmetic calculator constructed from spiking neural P systems and it application to information fusion. International Journal of Neural Systems, 31(1), 2050055–1205005517.

    Article  Google Scholar 

  33. Wu, T., & Jiang, S. (2021). Spiking neural P systems with a flat maximally parallel use of rules. Journal of Membrane Computing, 3(3), 221–231.

    Article  MathSciNet  MATH  Google Scholar 

  34. Păun, G., Rozenberg, G., & Salomaa, A. (2010). The Oxford handbook of membrane computing. Oxford University Press, Inc.

  35. Zhang, G., Gheorghe, M., Pan, L., & Pérez-Jiménez, M. J. (2014). Evolutionary membrane computing: A comprehensive survey and new results. Information Sciences, 279, 528–551.

    Article  Google Scholar 

  36. Yao, Z., & Liang, H. (2009). A variant of P systems for optimization. Neurocomputing, 72(4–6), 1355–1360.

    Google Scholar 

  37. Zhang, G., Gheorghe, M., & Li, Y. (2012). A membrane algorithm with quantum-inspired subalgorithms and its application to image processing. Natural Computing, 11(4), 701–717.

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, G., Cheng, J., Gheorghe, M., & Meng, Q. (2013). A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems. Applied Soft Computing, 13(3), 1528–1542.

    Article  Google Scholar 

  39. Ou, Z., Zhang, G., Wang, T., & Huang, X. (2013). Automatic design of cell-like p systems through tuning membrane structures, initial objects and evolution rules. International Journal of Unconventional Computing, 9(5–6), 425–443.

    Google Scholar 

  40. Dong, J., Stachowicz, M., Zhang, G., Cavaliere, M., Rong, H., & Paul, P. (2021). Automatic design of spiking neural p systems based on genetic algorithms. International Journal of Unconventional Computing, 16(2–3), 201–216.

    Google Scholar 

  41. Dong, J., Stachowicz, M., Zhang, G., Cavaliere, M., Rong, H., & Paul, P. (2022). Automatic design of arithmetic operation spiking neural P systems. Natural Computing, 21(3), 1–16.

    Google Scholar 

  42. Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(05), 1440006.

    Article  Google Scholar 

  43. Zhu, M., Yang, Q., Dong, J., Zhang, G., & Neri, F. (2020). An adaptive optimization spiking neural P system for binary problems. International Journal of Neural Systems, 31(1), 2050054.

    Article  Google Scholar 

  44. Dong, J., Zhang, G., Luo, B., Yang, Q., Guo, D., Rong, H., Zhu, M., & Zhou, K. (2022). A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems. Information Sciences, 596(1), 1–14.

    Article  Google Scholar 

  45. Han, K., & Kim, J. (2002). Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 6(6), 580–593.

    Article  Google Scholar 

  46. Zhang, G. (2011). Quantum-inspired evolutionary algorithms: A survey and empirical study. Journal of Heuristics, 17(3), 303–351.

    Article  MATH  Google Scholar 

  47. Zhang, G., Cheng, J., & Gheorghe, M. (2014). Dynamic behavior analysis of membrane-inspired evolutionary algorithms. International Journal of Computers, Communications and Control, 9(2), 227–242.

    Article  Google Scholar 

  48. Yu, X., Tang, K., & Yao, X.(2008). An immigrants scheme based on environmental information for genetic algorithms in changing environments. In Proceedings of the IEEE congress on evolutionary computation, CEC 2008, June 1–6, 2008, Hong Kong, China (pp. 1141–1147).

  49. Apolloni, J., Leguizamón, G., García-Nieto, J., & Alba, E. (2008). Island based distributed differential evolution: An experimental study on hybrid testbeds. In 2008 eighth international conference on hybrid intelligent systems (pp. 696–701).

  50. Gao, H., Xu, G., & Wang, Z.(2006). A novel quantum evolutionary algorithm and its application. In World congress on intelligent control and automation.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61972324, 61672437, 61702428), the Sichuan Science and Technology Program (2021YFS0313, 2021YFG0133), Beijing Advanced Innovation Center for Intelligent Robots and Systems (2019IRS14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gexiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Zhang, G., Luo, B. et al. Multi-learning rate optimization spiking neural P systems for solving the discrete optimization problems. J Membr Comput 4, 209–221 (2022). https://doi.org/10.1007/s41965-022-00105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-022-00105-6

Keywords

Navigation