Skip to main content
Log in

Medical image fusion based on DTNP systems and Laplacian pyramid

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Dynamic threshold neural P systems (DTNP systems) are a theoretical computing model proposed in previous work. As a variant of spiking neural P (SNP) systems, DTNP systems have two mechanisms: spiking and dynamic threshold mechanisms. By considering local connections of neurons, we design two-dimensional DTNP systems with local topology. Based on the DTNP systems, we develop a novel fusion method based on Laplacian pyramid for medical images. In the decomposition layers of Laplacian pyramid, WLE and INSML features are combined as the input of DTNP systems, and its output is used as the control signal of fusion rules. The proposed fusion method is evaluated on seven pairs of benchmark medical images and is compared with eight baseline fusion methods. Experimental results demonstrate the advantage of the proposed fusion method for the fusion of medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ionescu, M., Pǎun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71, 279–308.

    MathSciNet  MATH  Google Scholar 

  2. Pǎun, G., Rozenberg, G., & Salomaa, A. (2010). The Oxford Handbook of Membrane Computing. New York: Oxford University Press.

    Book  MATH  Google Scholar 

  3. Pǎun, Gh. (2007). Spiking neural P systems with astrocyte-like control. Journal of Universal Computer Science, 13(11), 1707–1721.

    MathSciNet  Google Scholar 

  4. Pan, L., & Pǎun, G. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers Communications & Control, 4(3), 273–282.

    Article  Google Scholar 

  5. Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., Lou, X., & Huang, X. (2017). Spiking neural P systems with multiple channels. Neural Networks, 95, 66–71.

    Article  MATH  Google Scholar 

  6. Wu, T., Pǎun, A., Zhang, Z., & Pan, L. (2017). piking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360.

    Google Scholar 

  7. Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T. (2015). Spiking neural P systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917.

    Article  MATH  Google Scholar 

  8. Song, X., Valencia-Cabrera, L., Peng, H., Wang, J., & Pérez-Jiménez, M. J. (2021). Spiking neural P systems with delay on synapses. International Journal of Neural Systems, 31(1), 1–19.

    Article  Google Scholar 

  9. Peng, H., & Wang, J. (2018). Coupled neural P systems. IEEE Transactions on Neural Networks and Learning Systems, 30(6), 1672–1682.

    Article  MathSciNet  Google Scholar 

  10. Peng, H., Li, B., Wang, J., Song, X., Wang, T., Valencia-Cabrera, L., Pérez-Hurtado, I., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2020). Spiking neural P systems with inhibitory rules. Knowledge-Based Systems, 188, 1–10.

    Article  Google Scholar 

  11. Peng, H., Bao, T., Luo, X., Wang, J., Song, X., Riscos-Núñez, A., & Pérez-Jiménez, M.J. (2020). Dendrite P systems. Neural Networks, 127, 110–120.

    Article  MATH  Google Scholar 

  12. Peng, H., Lv, Z., Li, B., Luo, X., Wang, J., Song, X., Wang, T., Pérez-Jiménez, M.J., & Riscos-Núñez, A. (2020). Nonlinear spiking neural P systems. International Journal of Neural Systems, 30(10): 1–17.

    Article  Google Scholar 

  13. Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019). Membrane computing and image processing: a short survey. Journal of Membrane Computing, 1(1), 58–73.

    Article  MathSciNet  Google Scholar 

  14. Singh, R., & Khare, A. (2014). Fusion of multimodal medical images using Daubechies complex wavelet transform—a multiresolution approach. Information Fusion, 19, 49–60.

    Article  Google Scholar 

  15. Manchanda, M., & Sharma, R. (2016). A novel method of multimodal medical image fusion using fuzzy transform. Journal of Visual Communication and Image Representation, 40, 197–217.

    Article  Google Scholar 

  16. Manchanda, M., & Sharma, R. (2018). An improved multimodal medical image fusion algorithm based on fuzzy transform. Journal of Visual Communication and Image Representation, 51, 76–94.

    Article  Google Scholar 

  17. Singh, S., & Anand, R. S. (2018). Ripplet domain fusion approach for CT and MR medical image information. Biomedical Signal Processing and Control, 46, 281–292.

    Article  Google Scholar 

  18. Padmavathi, K., Asha, C. S., & Karki, M. V. (2020). A novel medical image fusion by combining TV-L1 decomposed textures based on adaptive weighting scheme. Engineering Science and Technology, 23(1), 225–239.

    Google Scholar 

  19. Yang, L., Guo, B., & Ni, W. (2008). Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing, 72(1–3), 203–211.

    Article  Google Scholar 

  20. Zhu, Z., Yin, H., Chai, Y., Li, Y., & Qi, G. (2018). A novel multi-modality image method based on image decomposition and sparse representation. Information Science, 432, 516–529.

    Article  MathSciNet  Google Scholar 

  21. Zhang, Q., Shi, T., Wang, F., Blum, R. S., & Han, J. (2018). Robust sparse repesentation based multi-focus image fusion with dictionary construction and local spitial consistency. Pattern Recognition, 83, 299–313.

    Article  Google Scholar 

  22. Ma, X., Hu, S., Liu, S., Fang, J., & Xu, S. (2019). Multi-focus image fusion based on joint sparse representation and optimum theory. Signal Processing, 78, 125–134.

    Google Scholar 

  23. Zhang, M., Li, S., Yu, F., & Tian, X. (2020). Image fusion employing adaptive spectral-spatial gradient sparse regularization in UAV remote sensing. Signal Processing, 170(107434), 1–13.

    Google Scholar 

  24. Zhang, Y., Yang, M., Li, N., & Yu, Z. (2020). Analysis-synthesis dictionary pair learning and patch saliency measure for image fusion. Signal Processing, 167(107327), 1–13.

    Google Scholar 

  25. Hu, Q., Hu, S., & Zhang, F. (2020). Multi-modality medical image fusion based on separable dictionary learning and Gabor filtering. Signal Processing, 83(115758), 1–10.

    Google Scholar 

  26. Li, H., Wang, Y., Yang, Z., et al. (2020). Discriminative dictionary learning-based multiple component decomposition for detail-preserving noisy image fusion. IEEE Transactions on Instrumentation and Measurement, 69(4), 1082–1102.

    Article  Google Scholar 

  27. Li, H., & Wu, X. (2019). Densefuse: a fusion approach to infrared and visible images. IEEE Transactions on Image Processing, 28(5), 2614–2623.

    Article  MathSciNet  Google Scholar 

  28. Zhang, Y., & Liu, Y. (2020). IFCNN: a general image fusion framework based on convolutional neural network. Information Fusion, 54, 99–118.

    Article  Google Scholar 

  29. Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2019). Dynamic threshold neural P systems. Knowledge-Based Systems, 163, 875–884.

    Article  Google Scholar 

  30. Liu, Y., Liu, S., & Wang, Z. (2015). A general framework for image fusion based on multi-scale transform and sparse representation. Information Fusion, 24(1), 147–164.

    Article  Google Scholar 

  31. Li, S., Kang, X., & Hu, J. (2013). Image fusion with guided filtering. IEEE Transactions on Image Processing, 22(7), 2864–2875.

    Article  Google Scholar 

  32. Zhu, Z., Zheng, M., Qi, G., Wang, D., & Xiang, Y. (2019). A phase congruency and local laplacian energy based multi-modality medical image fusion method in NSCT domain. IEEE Access, 2019(7), 20811–20824.

    Article  Google Scholar 

  33. Li, B., Peng, H., & Wang, J. (2021). A novel fusion method based on dynamic threshold neural P systems and nonsubsampled contourlet transform for multi-modality medical images. Signal Processing, 178, 107793.

    Article  Google Scholar 

  34. Yin, M., Liu, X., Liu, Y., & Chen, X. (2019). Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Transactions on Instrumentation and Measurement, 68(1), 49–64.

    Article  Google Scholar 

  35. Tan, W., Tiwari, P., Pandey, H., Moreira, C., & Jaiswal, A. (2020). Multimodal medical image fusion algorithm in the era of big data. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-05173-2.

  36. Liu, Y., Chen, X., Cheng, J., & Peng, H. (2017). A medical image fusion method based on convolutional neural networks. 20th International Conference on Information Fusion, Xi’an, China, pp. 1070–1060.

  37. Xydeas, C. S., & Petrovic, V. (2000). Objective image fusion performance measure. Electronics Letters, 36(4), 308–309.

    Article  Google Scholar 

  38. Hossny, M., Nahavandi, S., & Creighton, D. (2008). Comments on information measure for performance of image fusion. Electronics Letters, 44(18), 1066–1067.

    Article  Google Scholar 

  39. Haghighat, M. B. A., Aghagolzadeh, A., & Seyedarabi, H. (2011). A non-reference image fusion metric based on mutual information of image features. Computer Electronic Engineering, 37(5), 744–756.

    Article  MATH  Google Scholar 

  40. Aslantas, V., & Bendes, E. (2015). A new image quality metric for image fusion: the sum of the correlations of differences. International Journal of Electronics and Communications, 69(12), 1890–1896.

    Article  Google Scholar 

  41. Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multiscale structural similarity for image quality assessment. The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003(2), 1398–1402.

    Article  Google Scholar 

  42. Aslantas, V., & Kurban, R. (2010). Fusion of multi-focus images using differential evolution algorithm. Expert Systems with Applications, 37(12), 8861–8870.

    Article  Google Scholar 

  43. Cui, G., Feng, H., Xu, Z., Li, Q., & Chen, Y. (2015). Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Optical Communications, 341, 199–209.

    Article  Google Scholar 

  44. Eskicioglu, A. M., & Fisher, P. S. (1995). Image quality measures and their performance. IEEE Transactions on Communications, 43(12), 2959–2965.

    Article  Google Scholar 

  45. Kumar, M., & Dass, S. (2009). A total variation-based algorithm for pixel-level image fusion. IEEE Transactions on Image Processing, 18(9), 2137–2143.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 62076206 and No. 62176216), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, S., Zhang, L., Peng, H. et al. Medical image fusion based on DTNP systems and Laplacian pyramid. J Membr Comput 3, 284–295 (2021). https://doi.org/10.1007/s41965-021-00087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-021-00087-x

Keywords

Navigation