Skip to main content

Division rules for tissue P systems inspired by space filling curves

Abstract

We propose a new variant of tissue P systems, with oriented division rules and external inputs. The oriented division rules are based on Hilbert’s space filling curve, more precisely on a new variant of parallel array rewriting rules, which generate Hilbert words of different ’resolutions’ in array representation. The P systems introduced here have also the capability to receive input from an external source. This is illustrated with a simple problem, that of approximating the contour of a 2D picture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ahmed, M., & Bokhari, S. (2007). Mapping with space filling surfaces. IEEE Transactions on Parallel and Distributed Systems, 18(9), 1258–1269. https://doi.org/10.1109/TPDS.2007.1049.

    Article  Google Scholar 

  2. 2.

    Alhazov, A. (2006). Number of protons/bi-stable catalysts and membranes in P systems. time-freeness. In R. Freund, Gh. Păun, G. Rozenberg, & A. Salomaa (Eds.), Membrane computing (pp. 79–95). Berlin: Springer.

    Chapter  Google Scholar 

  3. 3.

    Aluru, S., & Sevilgen, F.E. (1997). Parallel domain decomposition and load balancing using space-filling curves. In: Proceedings fourth international conference on high-performance computing, pp. 230–235. https://doi.org/10.1109/HIPC.1997.634498.

  4. 4.

    Bader, M. (2012). Space-filling curves: an introduction with applications in scientific computing. Berlin: Incorporated: Springer Publishing Company.

    MATH  Google Scholar 

  5. 5.

    Ceterchi, R., Mutyam, M., Păun, Gh., & Subramanian, K. G. (2003). Array-rewriting P systems. Natural Computing: An International Journal, 2(3), 229–249. https://doi.org/10.1023/A:1025497107681.

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Ceterchi, R., Orellana-Martín, D., & Zhang, G. Contour approximation with P systems. In: Proceedings of the eighteenth brainstorming week on membrane computing, pp. 49–62. Sevilla, Spain

  7. 7.

    Ceterchi, R., & Subramanian, K.G. (2020). Generating pictures in string representation with P systems: The case of space-filling curves. Journal of Membrane Computing, 2, 369–379. https://doi.org/10.1007/s41965-020-00061-z.

    MathSciNet  Article  Google Scholar 

  8. 8.

    Ceterchi, R., Zhang, L., Pan, L., Subramanian, K.G., & Zhang, G. Generating hilbert words in array representation with P systems. In: Pre-proceedings of the eighth Asian conference on membrane computing (ACMC2019), pp. 437–448. Xiamen, China.

  9. 9.

    Ciobanu, G., Pérez-Jiménez, M. J., & Păun, Gh. (2005). Applications of membrane computing (natural computing series). Berlin: Springer.

    Google Scholar 

  10. 10.

    Cole, A. J. (1987). Compaction techniques for raster scan graphics using space-filling curves. The Computer Journal, 30(1), 87–92. https://doi.org/10.1093/comjnl/30.1.87.

    Article  Google Scholar 

  11. 11.

    Freund, R., Kari, L., Oswald, M., & Sosík, P. (2005). Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Science, 330(2), 251–266. https://doi.org/10.1016/j.tcs.2004.06.029.

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Frisco, P., Gheorghe, M., & Pérez-Jiménez, M. J. (2014). Applications of membrane computing in systems and synthetic biology. Complexity and computation series: emergence. Berlin: Springer.

    Book  Google Scholar 

  13. 13.

    Hilbert, D. (1891). Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathematische Annalen, 38, 459–460.

    MathSciNet  Article  Google Scholar 

  14. 14.

    Ibarra, O. H., Dang, Z., & Egecioglu, O. (2004). Catalytic P systems, semilinear sets, and vector addition systems. Theoretical Computer Science, 312(2), 379–399. https://doi.org/10.1016/j.tcs.2003.10.028.

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Ionescu, M., & Sburlan, D. (2004). On P systems with promoters/inhibitors. Journal of Universal Computer Science, 10(5), 581–599.

    MathSciNet  Google Scholar 

  16. 16.

    Krishna, S. N., & Păun, A. (2004). Results on catalytic and evolution-communication P systems. New Generation Computing, 22(4), 377–394. https://doi.org/10.1007/BF03037288.

    Article  MATH  Google Scholar 

  17. 17.

    Kurc, T., Catalyurek, U., Chang, Chialin, Sussman, A., & Saltz, J. (2001). Visualization of large data sets with the active data repository. IEEE Computer Graphics and Applications, 21(4), 24–33. https://doi.org/10.1109/38.933521.

    Article  Google Scholar 

  18. 18.

    Lawder, J. K. (2000). Calculation of mappings between one and n-dimensional values using the Hilbert space-filling curve. London: School of Computer Science and Information Systems, Birkbeck College, University of London, London Research Report BBKCS-00-01 August.

    Google Scholar 

  19. 19.

    Maurer, H., Rozenberg, G., & Welzl, E. (1982). Using string languages to describe picture languages. Information and Control, 54(3), 155–185. https://doi.org/10.1016/S0019-9958(82)80020-X.

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Patil, S., Das, S.R., & Nasipuri, A. (2004). Serial data fusion using space-filling curves in wireless sensor networks. In: 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004., (pp. 182–190). https://doi.org/10.1109/SAHCN.2004.1381916.

  21. 21.

    Peano: (1890). Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen, 36, 157–160.

    MathSciNet  Article  Google Scholar 

  22. 22.

    Pilkington, J. R., & Baden, S. B. (1996). Dynamic partitioning of non-uniform structured workloads with spacefilling curves. IEEE Transactions on Parallel and Distributed Systems, 7(3), 288–300. https://doi.org/10.1109/71.491582.

    Article  Google Scholar 

  23. 23.

    Platzman, L. K., & Bartholdi, J. J. (1989). Spacefilling curves and the planar travelling salesman problem. Journal of ACM, 36(4), 719–737. https://doi.org/10.1145/76359.76361.

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Păun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143. https://doi.org/10.1006/jcss.1999.1693.

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Quweider, M., & Salari, E. (1995). Use of space filling curves in fast encoding of vq images. In: Proceedings, international conference on image processing, vol. 3, (pp. 101–104). https://doi.org/10.1109/ICIP.1995.537590.

  26. 26.

    Sagan, H. (1994). Space-filling curves. Berlin: Springer.

    Book  Google Scholar 

  27. 27.

    Siromoney, R., & Subramanian, K. G. (1983). Space-filling curves and infinite graphs. In H. Ehrig, M. Nagl, & G. Rozenberg (Eds.), Graph-grammars and their application to computer science (pp. 380–391). Berlin: Springer.

    Chapter  Google Scholar 

  28. 28.

    Skubalska-Rafajlowicz, E., & Krzyzak, A. (1996). Fast k-nn classification rule using metric on space-filling curves. In: Proceedings of 13th international conference on pattern recognition, vol. 2 (pp. 121–125). https://doi.org/10.1109/ICPR.1996.546736.

  29. 29.

    Valencia-Cabrera, L., Pérez-Hurtado, I., & Martínez-del Amor, M. A. (2020). Simulation challenges in membrane computing. Journal of Membrane Computing, 2, 392–402.

    MathSciNet  Article  Google Scholar 

  30. 30.

    Zhang, G., Pérez-Jiménez, M. J., & Gheorghe, M. (2018). Real-life applications with membrane computing (1st ed.). Berlin: Incorporated: Springer Publishing Company.

    MATH  Google Scholar 

  31. 31.

    PMCGPU project website: https://sourceforge.net/projects/pmcgpu/. Accessed 29 Sep 2020.

Download references

Acknowledgements

This work was supported in part by the research project TIN2017-89842-P, cofinanced by Ministerio de Economía, Industria y Competitividad (MINECO) of Spain, through the Agencia Estatal de Investigación (AEI), and by Fondo Europeo de Desarrollo Regional (FEDER) of the European Union. It was also partially supported by the National Natural Science Foundation of China, under Grants 61672437, 61972324 and 61702428.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Orellana-Martín.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ceterchi, R., Orellana-Martín, D. & Zhang, G. Division rules for tissue P systems inspired by space filling curves. J Membr Comput 3, 105–115 (2021). https://doi.org/10.1007/s41965-021-00071-5

Download citation