Skip to main content

Spiking neural P systems with a flat maximally parallel use of rules

Abstract

Spiking neural P systems (SN P systems) are a class of distributed and parallel computation models, which are inspired by the way in which neurons process information by means of spikes, where rules in each neuron are applied in a sequential mode in the sense that at every step at most one rule is executed in each neuron. In this work, a flat maximally parallel mode of using rules is introduced into SN P systems, where at every step, a maximal set of applicable rules in each neuron is chosen and each rule in the chosen set is applied exactly once. The computation power of SN P systems working in the flat maximally parallel mode is investigated. Specifically, it is demonstrated that such systems are Turing universal as both number generating devices and function computing devices. Moreover, it is shown that 68 neurons are sufficient for constructing a universal SN P working in the flat maximally parallel mode and using standard rules as a function computing device. These results indicate that the computation power of SN P systems is robust regarding their mode of flat maximal parallelism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problems. Science, 266(5187), 1021–1024.

    Article  Google Scholar 

  2. 2.

    Aman, B., & Ciobanu, G. (2019). Synchronization of rules in membrane computing. Journal of Membrane Computing, 1(4), 233–240.

    MathSciNet  Article  Google Scholar 

  3. 3.

    Andreu-Guzmán, J. A., & Valencia-Cabrera, L. (2020). A novel solution for GCP based on an OLMS membrane algorithm with dynamic operators. Journal of Membrane Computing, 2(1), 1–13.

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2017). Spiking neural P systems with scheduled synapses. IEEE Transactions on Nanobioscience, 16(8), 792–801.

    Article  Google Scholar 

  5. 5.

    Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T. (2015). Spiking neural P systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917.

    MATH  Article  Google Scholar 

  6. 6.

    Chen, H., Freund, R., Ionescu, M., Păun, Gh, & Pérez-Jiménez, M. J. (2007). On string languages generated by spiking neural P systems. Fundamenta Informaticae, 75(1–4), 141–162.

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Chen, Z., Zhang, P., Wang, X., Shi, X., Wu, T., & Zheng, P. (2018). A computational approach for nuclear export signals identification using spiking neural P systems. Neural Computing and Applications, 29(3), 695–705.

    Article  Google Scholar 

  8. 8.

    Ciobanu, Gh., Păun, Gh., & Ştefǎnescu, G. (2003). Sevilla carpets associated with P systems. In M. Cavaliere, C. Martin-Vide & Gh. Păun (Eds.), Proceedings of the brainstorming week on membrane computing (pp. 135–140). Tarragona, Spain.

  9. 9.

    de la Cruz, R. T. A., Cabarle, F. G., & Adorna, H. N. (2019). Generating context-free languages using spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(3), 161–177.

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019). Membrane computing and image processing: A short survey. Journal of Membrane Computing, 1(1), 58–73.

    MathSciNet  Article  Google Scholar 

  11. 11.

    Díaz-Pernil, D., Peña-Cantillana, F., & Gutiérrez-Naranjo, M. A. (2013). A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing, 115, 81–91.

    Article  Google Scholar 

  12. 12.

    Hopcroft, J., Motwani, R., & Ullman, J. (1979). Introduction to automata theory, languages, and computation (Vol. 3). Reading, Boston: Addison-wesley.

    MATH  Google Scholar 

  13. 13.

    Ionescu, M., Păun, Gh., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2, 3), 279–308.

  14. 14.

    Ionescu, M., Păun, Gh, & Yokomori, T. (2007). Spiking neural P systems with an exhaustive use of rules. International Journal of Unconventional Computing, 3(2), 135–154.

    Google Scholar 

  15. 15.

    Ishdorj, T. O., Leporati, A., Pan, L., Zeng, X., & Zhang, X. (2010). Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theoretical Computer Science, 411(25), 2345–2358.

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Jiang, Y., Su, Y., & Luo, F. (2019). An improved universal spiking neural P system with generalized use of rules. Journal of Membrane Computing, 1(4), 270–278.

    MathSciNet  Article  Google Scholar 

  17. 17.

    Jimenez, Z. B., Cabarle, F. G. C., de la Cruz, R. T. A., Buño, K. C., Adorna, H. N., Hernandez, N. H. S., et al. (2019). Matrix representation and simulation algorithm of spiking neural P systems with structural plasticity. Journal of Membrane Computing, 1(3), 145–160.

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Juayong, R. A. B., & Adorna, H. N. (2020). A survey of results on evolution-communication P systems with energy. Journal of Membrane Computing, 2(1), 59–69.

    MathSciNet  Article  Google Scholar 

  19. 19.

    Korec, I. (1996). Small universal register machines. Theoretical Computer Science, 168(2), 267–301.

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Liu, Y., Nicolescu, R., & Sun, J. (2020). Formal verification of cP systems using PAT3 and ProB. Journal of Membrane Computing, 2(2), 80–94.

    MathSciNet  Article  Google Scholar 

  21. 21.

    Martín-Vide, C., Păun, Gh., Pazos, J., & Rodríguez-Patón, A. (2003). Tissue P systems. Theoretical Computer Science, 296(2), 295–326.

  22. 22.

    Minsky, M. (1967). Computation: Finite and infinite machines. Englewood Cliffs, N.J.: Prentice-Hall.

    MATH  Google Scholar 

  23. 23.

    Ochirbat, O., Ishdorj, T. O., & Cichon, G. (2020). An error-tolerant serial binary full-adder via a spiking neural P system using HP/LP basic neurons. Journal of Membrane Computing, 2(1), 42–48.

    MathSciNet  Article  Google Scholar 

  24. 24.

    Pan, L., Păun, Gh, & Pérez-Jiménez, M. J. (2011). Spiking neural P systems with neuron division and budding. Science China Information Sciences, 54(8), 1596–1607.

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    Pan, L., Păun, Gh, & Song, B. (2016). Flat maximal parallelism in P systems with promoters. Theoretical Computer Science, 623, 83–91.

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Pan, L., Păun, Gh, Zhang, G., & Neri, F. (2017). Spiking neural P systems with communication on request. International Journal of Neural Systems, 27(08), 1750042.

    Article  Google Scholar 

  27. 27.

    Pan, L., Wu, T., Su, Y., & Vasilakos, A. V. (2017). Cell-like spiking neural P systems with request rules. IEEE Transactions on Nanobioscience, 16(6), 513–522.

    Article  Google Scholar 

  28. 28.

    Pan, L., & Zeng, X. (2009). A note on small universal spiking neural P systems. International workshop on membrane computing (pp. 436–447). Berlin: Springer.

    Google Scholar 

  29. 29.

    Pan, L., & Zeng, X. (2011). Small universal spiking neural P systems working in exhaustive mode. IEEE Transactions on Nanobioscience, 10(2), 99–105.

    Article  Google Scholar 

  30. 30.

    Păun, A., & Păun, Gh. (2007). Small universal spiking neural P systems. BioSystems, 90(1), 48–60.

    MATH  Article  Google Scholar 

  31. 31.

    Păun, G., Rozenberg, G., & Salomaa, A. (2010). The Oxford handbook of membrane computing. New York: Oxford University Press.

    MATH  Book  Google Scholar 

  32. 32.

    Păun, Gh. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143.

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Păun, Gh. (2012). Membrane computing: An introduction. Berlin, Germany: Springer.

    MATH  Google Scholar 

  34. 34.

    Păun, Gh, Pérez-Jiménez, M. J., & Rozenberg, G. (2006). Spike trains in spiking neural P systems. International Journal of Foundations of Computer Science, 17(04), 975–1002.

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Rong, H., Yi, K., Zhang, G., Dong, J., Paul, P., & Huang, Z. (2019). Automatic implementation of fuzzy reasoning spiking neural P systems for diagnosing faults in complex power systems. Complexity, 2019, 2635714.

    Article  Google Scholar 

  36. 36.

    Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386.

    Article  Google Scholar 

  37. 37.

    Siegelmann, H. T., & Sontag, E. D. (1995). On the computational power of neural nets. Journal of Computer and System Sciences, 50(1), 132–150.

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Song, B., Li, K., Orellana-Martín, D., Valencia-Cabrera, L., & Pérez-Jiménez, M. J. (2020). Cell-like P systems with evolutional symport/antiport rules and membrane creation. Information and Computation, 275, 104542.

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. D., & Rodríguez-Patón, A. (2019). Spiking neural P systems with learning functions. IEEE Transactions on Nanobioscience, 18(2), 176–190.

    Article  Google Scholar 

  40. 40.

    Song, T., Pang, S., Hao, S., Rodríguez-Patón, A., & Zheng, P. (2019). A parallel image skeletonizing method using spiking neural P systems with weights. Neural Processing Letters, 50(2), 1485–1502.

    Article  Google Scholar 

  41. 41.

    Song, B., Pérez-Jiménez, M. J., Păun, Gh, & Pan, L. (2016). Tissue P systems with channel states working in the flat maximally parallel way. IEEE Transactions on Nanobioscience, 15(7), 645–656.

    Article  Google Scholar 

  42. 42.

    Song, T., Rodríguez-Patón, A., Zheng, P., & Zeng, X. (2017). Spiking neural P systems with colored spikes. IEEE Transactions on Cognitive and Developmental Systems, 10(4), 1106–1115.

    Article  Google Scholar 

  43. 43.

    Song, B., Zeng, X., Jiang, M., & Pérez-Jiménez, M. J. (2020). Monodirectional tissue P systems with promoters. IEEE Transactions on Cybernetics,. https://doi.org/10.1109/TCYB.2020.3003060.

    Article  Google Scholar 

  44. 44.

    Song, B., Zeng, X., & Rodríguez-Patón, A. Monodirectional tissue P systems with channel states. Information Sciences, 546, 206–219.

  45. 45.

    Song, T., Zheng, P., Wong, M. D., & Wang, X. (2016). Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Information Sciences, 372, 380–391.

    MATH  Article  Google Scholar 

  46. 46.

    Valencia-Cabrera, L., & Song, B. (2020). Tissue P systems with promoter simulation with MeCoSim and P-Lingua framework. Journal of Membrane Computing, 2(2), 95–107.

    MathSciNet  Article  Google Scholar 

  47. 47.

    Wang, J., Hoogeboom, H. J., Pan, L., Păun, Gh, & Pérez-Jiménez, M. J. (2010). Spiking neural P systems with weights. Neural Computation, 22(10), 2615–2646.

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., & Pérez-Jiménez, M. J. (2015). Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems, 30(3), 1182–1194.

    Article  Google Scholar 

  49. 49.

    Wu, T., Bîlbîe, F. D., Păun, A., Pan, L., & Neri, F. (2018). Simplified and yet turing universal spiking neural P systems with communication on request. International Journal of Neural Systems, 28(08), 1850013.

    Article  Google Scholar 

  50. 50.

    Wu, T., & Pan, L. (2020). The computation power of spiking neural P systems with polarizations adopting sequential mode induced by minimum spike number. Neurocomputing, 401, 392–404.

    Article  Google Scholar 

  51. 51.

    Wu, T., Pan, L., & Alhazov, A. (2019). Computation power of asynchronous spiking neural P systems with polarizations. Theoretical Computer Science, 777, 474–489.

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Wu, T., Pan, L., Yu, Q., & Tan, K. C. (2020). Numerical spiking neural P systems. IEEE Transactions on Neural Networks and Learning Systems,. https://doi.org/10.1109/TNNLS.2020.3005538.

    Article  Google Scholar 

  53. 53.

    Wu, T., Păun, A., Zhang, Z., & Pan, L. (2018). Spiking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360.

    MathSciNet  Article  Google Scholar 

  54. 54.

    Wu, T., Wang, Y., Jiang, S., Su, Y., & Shi, X. (2018). Spiking neural P systems with rules on synapses and anti-spikes. Theoretical Computer Science, 724, 13–27.

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Wu, T., Zhang, Z., Păun, Gh, & Pan, L. (2016). Cell-like spiking neural P systems. Theoretical Computer Science, 623, 180–189.

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Zhang, X., Pan, L., & Păun, A. (2015). On the universality of axon P systems. IEEE Transactions on Neural Networks and Learning Systems, 26(11), 2816–2829.

    MathSciNet  Article  Google Scholar 

  57. 57.

    Zhang, X., Wang, B., & Pan, L. (2014). Spiking neural P systems with a generalized use of rules. Neural Computation, 26(12), 2925–2943.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (62002251, 61772214, 61902360), Natural Science Foundation of Jiangsu Province (BK20200856), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB520013), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tingfang Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Jiang, S. Spiking neural P systems with a flat maximally parallel use of rules. J Membr Comput 3, 221–231 (2021). https://doi.org/10.1007/s41965-020-00069-5

Download citation

Keywords

  • Membrane computing
  • Spiking neural P system
  • Parallelism
  • Universality