Skip to main content
Log in

Characterizing PSPACE with shallow non-confluent P systems

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

In P systems with active membranes, the question of understanding the power of non-confluence within a polynomial time bound is still an open problem. It is known that, for shallow P systems, that is, with only one level of nesting, non-confluence allows them to solve conjecturally harder problems than confluent P systems, thus reaching \(\mathbf{PSPACE }\). Here we show that \(\mathbf{PSPACE }\) is not only a bound, but actually an exact characterization. Therefore, the power endowed by non-confluence to shallow P systems is equal to the power gained by confluent P systems when non-elementary membrane division and polynomial depth are allowed, thus suggesting a connection between the roles of non-confluence and nesting depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Simulating elementary active membranes, with an application to the P conjecture. In: Gheorghe M, Rozenberg G, Sosík P, Zandron C, editors. Membrane computing, 15th International conference, CMC 2014, lecture notes in computer science, vol. 8961. New York: Springer; 2014. p. 284–99.

    Google Scholar 

  2. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Membrane division, oracles, and the counting hierarchy. Fund Inf. 2015;138(1–2):97–111.

    MathSciNet  MATH  Google Scholar 

  3. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Monodirectional P systems. Nat Comput. 2016;15(4):551–64.

    Article  MathSciNet  Google Scholar 

  4. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. The counting power of P systems with antimatter. Theor Comput Sci. 2017;701:161–73.

    Article  MathSciNet  MATH  Google Scholar 

  5. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Shallow non-confluent P systems. In: Leporati A, Rozenberg G, Salomaa A, Zandron C, editors. Membrane computing, 17th international conference, CMC 2016. Lecture notes in computer science, vol. 10105. New York: Springer; 2017. p. 307–16.

    Google Scholar 

  6. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. A toolbox for simpler active membrane algorithms. Theor Comput Sci. 2017;673:42–57.

    Article  MathSciNet  MATH  Google Scholar 

  7. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Solving QSAT in sublinear depth. In: Hinze T, Rozenberg G, Salomaa A, Zandron C editors. Membrane computing, CMC 2018. Lecture notes in computer science, vol 11399. Cham: Springer; 2019.

    Google Scholar 

  8. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Subroutines in P systems and closure properties of their complexity classes. Theor Comput Sci. 2018.

  9. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. A survey on space complexity of P systems with active membranes. Int J Adv in Eng Sci Appl Math. 2018;10(3):221–9.

    Article  MathSciNet  Google Scholar 

  10. Leporati A, Manzoni L, Mauri G, Porreca AE, Zandron C. Characterising the complexity of tissue P systems with fission rules. J Comput Syst Sci. 2017;90:115–28.

    Article  MathSciNet  MATH  Google Scholar 

  11. Murphy N, Woods D. The computational power of membrane systems under tight uniformity conditions. Nat Comput. 2011;10(1):613–32.

    Article  MathSciNet  MATH  Google Scholar 

  12. Păun Gh, Rozenberg G, Salomaa A, editors. The Oxford handbook of membrane computing. Oxford: Oxford University Press; 2010.

    MATH  Google Scholar 

  13. Pérez-Jiménez MJ, Romero-Jiménez A, Sancho-Caparrini F. Complexity classes in models of cellular computing with membranes. Nat Comput. 2003;2(3):265–84.

    Article  MathSciNet  MATH  Google Scholar 

  14. Porreca AE, Leporati A, Mauri G, Zandron C. Recent complexity-theoretic results on P systems with active membranes. J Logic Comput. 2015;25(4):1047–71.

    Article  MathSciNet  MATH  Google Scholar 

  15. Porreca AE, Mauri G, Zandron C. Non-confluence in divisionless P systems with active membranes. Theor Comput Sci. 2010;411(6):878–87.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sosík P. The computational power of cell division in P systems: Beating down parallel computers? Nat Comput. 2003;2(3):287–98.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sosík P, Rodríguez-Patón A. Membrane computing and complexity theory: a characterization of PSPACE. J Comput Syst Sci. 2007;73(1):137–52.

    Article  MathSciNet  MATH  Google Scholar 

  18. Zandron C, Ferretti C, Mauri G. Solving NP-complete problems using P systems with active membranes. In: Antoniou I, Calude CS, Dinneen MJ, editors. Unconventional models of computation, UMC’2K, proceedings of the second international conference. New York: Springer; 2001. p. 289–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Leporati.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leporati, A., Manzoni, L., Mauri, G. et al. Characterizing PSPACE with shallow non-confluent P systems. J Membr Comput 1, 75–84 (2019). https://doi.org/10.1007/s41965-019-00011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-019-00011-4

Keywords

Navigation