Skip to main content
Log in

Numerical simulation and optimal design of perovskite solar cell based on sensitized zinc oxide electron-transport layer

  • Original Paper
  • Published:
Multiscale and Multidisciplinary Modeling, Experiments and Design Aims and scope Submit manuscript

Abstract

The present manuscript deals with the numerical simulation and optimization of a planar perovskite solar cells (PSC) based on sensitized zinc oxide (ZnO) electron-transport layer (ETL) using solar cell capacitance simulator (SCAPS). Various device parameters such as perovskite thickness, doping density, bulk defect density, interface defect density and metal contact electrode effect on our PSC performance have been rigorously investigated. Simulation results demonstrate that optimizing the methylammonium lead triiodide perovskite (MAPbI3) absorber thickness of 600 nm with 1016 cm−3-dopant concentration and defect density lower than 1015 cm−3 is crucial for improved the device performance. Furthermore, the reduction of interfacial defect densities, specifically Zn:Co-NG/MAPbI3 to 1011 cm−2 and perovskite/Spiro-OMeTAD to 1012 cm−2, is crucial for enhancing device efficiency. In addition, replacing the Ag electrode with an Au electrode, which has a higher work function back contact material, is found to be more favorable for improving device efficiency. Through optimization, a high-efficiency perovskite solar cell with an efficiency of 21.16% is achieved. These simulation results can help researchers to construct high-performance planar perovskite solar cells in the most efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon request from the corresponding author.

References

  • Balis N, Verykios A, Soultati A, Constantoudis V, Papadakis M, Kournoutas F, Drivas C, Skoulikidou M-C, Gardelis S, Fakis M (2018) Triazine-substituted zinc porphyrin as an electron transport interfacial material for efficiency enhancement and degradation retardation in planar perovskite solar cells. ACS Appl Energy Mater 1(7):3216–3229

    Article  CAS  Google Scholar 

  • Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361:527–532

    Article  ADS  Google Scholar 

  • Burgelman M, Decock K, Khelifi S, Abass A (2013) Advanced electrical simulation of thin film solar cells. Thin Solid Films 535:296–301

    Article  CAS  ADS  Google Scholar 

  • Burgelman M, Decock K, Niemegeers A, Verschraegen J, Degrave S (2016) SCAPS manual. University of Ghent, Ghent

    Google Scholar 

  • Chouk R, Haouanoh D, Aguir C, Bergaoui M, Toubane M, Bensouici F, Tala-Ighil R, Erto A, Khalfaoui M (2020a) Dye sensitized TiO 2 and ZnO charge transport layers for efficient planar perovskite solar cells: experimental and DFT insights. J Electron Mater 49:1396–1403

    Article  CAS  ADS  Google Scholar 

  • Chouk R, Haouanoh D, Bergaoui M, Aguir C, Tala-Ighil R, Khalfaoui M (2020) Efficient planar perovskite solar cells using Schiff base complex as sensitizer for TiO 2 and ZnO layers. in 2020 6th IEEE International Energy Conference (ENERGYCon). 2020. IEEE

  • Chowdhury M, Shahahmadi S, Chelvanathan P, Tiong S, Amin N, Techato K-A, Nuthammachot N, Chowdhury T, Suklueng M (2020) Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results Phys 16:102839

    Article  Google Scholar 

  • Girtan M, Negulescu B (2022) A review on oxide/metal/oxide thin films on flexible substrates as electrodes for organic and perovskite solar cells. Opt Mater X 13:100122

    CAS  Google Scholar 

  • Gkini K, Balis N, Papadakis M, Verykios A, Skoulikidou M-C, Drivas C, Kennou S, Golomb M, Walsh A, Coutsolelos AG (2020) Manganese porphyrin interface engineering in perovskite solar cells. ACS Appl Energy Mater 3(8):7353–7363

    Article  CAS  Google Scholar 

  • Humadi MD, Hussein HT, Mohamed MS, Mohammed MK, Kayahan E (2021) A facile approach to improve the performance and stability of perovskite solar cells via FA/MA precursor temperature controlling in sequential deposition fabrication. Opt Mater 112:110794

    Article  CAS  Google Scholar 

  • Islam MT, Jani MR, Islam AF, Shorowordi KM, Chowdhury S, Nishat SS, Ahmed S (2021) Investigation of CsSn 0.5 Ge 0.5 I 3-on-Si tandem solar device utilizing SCAPS simulation. IEEE Trans Electron Devices 68(2):618–625

    Article  CAS  ADS  Google Scholar 

  • Kanoun MB, Kanoun A-A, Merad AE, Goumri-Said S (2021) Device design optimization with interface engineering for highly efficient mixed cations and halides perovskite solar cells. Results Phys 20:103707

    Article  Google Scholar 

  • Karthick S, Velumani S, Bouclé J (2020) Experimental and SCAPS simulated formamidinium perovskite solar cells: a comparison of device performance. Sol Energy 205:349–357

    Article  CAS  ADS  Google Scholar 

  • Kumar NS, Naidu KCB (2021) A review on perovskite solar cells (PSCs), materials and applications. J Materiomics 7(5):940–956

    Article  Google Scholar 

  • Lakhdar N, Hima A (2020) Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt Mater 99:109517

    Article  CAS  Google Scholar 

  • Lee J-W, Kim H-S, Park N-G (2016) Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc Chem Res 49(2):311–319

    Article  PubMed  Google Scholar 

  • Luo D, Su R, Zhang W, Gong Q, Zhu R (2020) Minimizing non-radiative recombination losses in perovskite solar cells. Nat Rev Mater 5(1):44–60

    Article  CAS  ADS  Google Scholar 

  • Ma Y, Zhang Y, Zhang H, Lv H, Hu R, Liu W, Wang S, Jiang M, Chu L, Zhang J (2021) Effective carrier transport tuning of CuOx quantum dots hole interfacial layer for high-performance inverted perovskite solar cell. Appl Surf Sci 547:149117

    Article  CAS  Google Scholar 

  • Odabaşi Özer Ç (2019) Knowledge extraction for organometallic perovskite solar cells from published data in literature. Doctoral Thesis. https://acikbilim.yok.gov.tr/handle/20.500.12812/72371. Accessed 28 Nov 2019

  • Odabaşı Ç, Yıldırım R (2019) Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools. Nano Energy 56:770–791

    Article  Google Scholar 

  • RafieiRad R, Ganji BA (2021) Efficiency improvement of Perovskite solar cells by utilizing CuInS2 thin layer: modeling and numerical study. IEEE Trans Electron Devices 68(10):4997–5002

    Article  CAS  ADS  Google Scholar 

  • Salem MS, Shaker A, Othman MS, Al-Bagawia AH, Fedawy M, Aleid GM (2022) Numerical analysis and design of high performance HTL-free antimony sulfide solar cells by SCAPS-1D. Opt Mater 123:111880

    Article  CAS  Google Scholar 

  • Sharma S, Pandey R, Madan J, Sharma R (2021) Optimization of Mixed Sn and Pb Perovskite Solar Cell in Terms of Transport Layers and Absorber Layer Thickness Variation. In 2021 Devices for Integrated Circuit (DevIC). IEEE

  • Tailor NK, Abdi-Jalebi M, Gupta V, Hu H, Dar MI, Li G, Satapathi S (2020) Recent progress in morphology optimization in perovskite solar cell. J Mater Chem A 8(41):21356–21386

    Article  CAS  Google Scholar 

  • Tan K, Lin P, Wang G, Liu Y, Xu Z, Lin Y (2016) Controllable design of solid-state perovskite solar cells by SCAPS device simulation. Solid-State Electron 126:75–80

    Article  CAS  ADS  Google Scholar 

  • Tessler N, Vaynzof Y (2020) Insights from device modeling of perovskite solar cells. ACS Energy Lett 5(4):1260–1270

    Article  CAS  Google Scholar 

  • Tress W, Domanski K, Carlsen B, Agarwalla A, Alharbi EA, Graetzel M, Hagfeldt A (2019) Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nat Energy 4(7):568–574

    Article  CAS  ADS  Google Scholar 

  • Wang T, Chen J, Wu G, Li M (2016) Optimal design of efficient hole transporting layer free planar perovskite solar cell. Sci China Mater 59(9):703–709

    Article  CAS  Google Scholar 

  • Yang F, Wang S, Dai P, Chen L, Wakamiya A, Matsuda K (2021) Progress in recycling organic–inorganic perovskite solar cells for eco-friendly fabrication. J Mater Chem A 9(5):2612–2627

    Article  CAS  Google Scholar 

  • Zaky AA, El Sehiemy RA, Rashwan YI, Elhossieni MA, Gkini K, Kladas A, Falaras P (2019) Optimal performance emulation of PSCs using the elephant herd algorithm associated with experimental validation. ECS J Solid State Sci Technol 8(12):Q249

    Article  CAS  Google Scholar 

  • Zhao P, Lin Z, Wang J, Yue M, Su J, Zhang J, Chang J, Hao Y (2019) Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer. ACS Appl Energy Mater 2(6):4504–4512

    Article  CAS  Google Scholar 

  • Zhao Q, Zhou B, Luo L, Duan Z, Xie Z, Hu Y (2023) A literature overview of cell layer materials for perovskite solar cells. MRS Commun. https://doi.org/10.1557/s43579-023-00467-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Marc Burgelman, University of Ghent, for providing SCAPS-1D simulator software. The authors extend their thanks to Researchers supporting project number (RSP2024R348), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

RC: Conceptualization, methodology, investigation, writing—original draft; CA: methodology, data acquisition, writing—original draft; RTI: methodology, formal analysis, writing—review and editing, supervision; NMA: Validation, investigation; BAA: writing—review and editing, Validation; MK: writing—review and editing, supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Bandar Ali Al-Asbahi or Mohamed Khalfaoui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouk, R., Aguir, C., Tala-Ighil, R. et al. Numerical simulation and optimal design of perovskite solar cell based on sensitized zinc oxide electron-transport layer. Multiscale and Multidiscip. Model. Exp. and Des. (2024). https://doi.org/10.1007/s41939-024-00376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41939-024-00376-9

Keywords

Navigation